148 resultados para Heat resistant materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural variation of Norit RI Extra activated carbon, progressively heated at 1373 K, was explored in terms of pore size and pore wall thickness distributions, for various periods of heating time, determined by argon adsorption at 87 K, both using an infinite as well as and finite wall thickness model. The latter approach has recently been developed in our laboratory and has been applied to several virgin carbons. The current results show significant variations in small pore size regions (< 7 angstrom) in association with strong growth of thick walls having at least three carbon sheets, as a result of heat treatment. In particular, shrinkage of the smallest pores due to strong interaction between their opposite walls as well as smoothening of carbon wall surfaces due to an increase in graphitization degree under thermal treatment have been found. Further, the results of pore wall thickness distribution are well corroborated by X-ray diffraction. The results of pore size and pore wall thickness distributions are also shown to be consistent with transmission electron microscopy analyses. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic yield criteria for porous ductile materials are explored numerically using the finite-element technique. The cases of spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic arrays are investigated with void volume fractions ranging from 2 % through to the percolation limit (over 90 %). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates that the yield criteria depend linearly on the determinant of the macroscopic stress tensor for the case of simple-cubic and body-centred cubic arrays - in contrast to the famous Gurson-Tvergaard-Needleman (GTN) formula - while there is no such dependence for face-centred cubic arrays within the accuracy of the finite-element discretisation. The data are well fit by a simple extension of the GTN formula which is valid for all void volume fractions, with yield-function convexity constraining the form of the extension in terms of parameters in the original formula. Simple cubic structures are more resistant to shear, while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate analytically the first and the second law characteristics of fully developed forced convection inside a porous-saturated duct of rectangular cross-section. The Darcy-Brinkman flow model is employed. Three different types of thermal boundary conditions are examined. Expressions for the Nusselt number, the Bejan number, and the dimensionless entropy generation rate are presented in terms of the system parameters. The conclusions of this analytical study will make it possible to compare, evaluate, and optimize alternative rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, hut it is significant on the species concentration distribution in the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytophthora root rot (Phytophthora medicaginis) and colletotrichum crown rot (Colletotrichum trifoli) are the 2 most serious pathogens of lucerne in eastern Australia. Work reported in this paper shows that in glasshouse tests of the 11 most commonly grown Australian lucerne cultivars, the proportion of individual plants with resistance to both pathogens ranges from 0 (Hunter River and Aurora) through to a maximum of 19.8% (Sequel HR). Within 9 of the cultivars, the proportion of individual plants resistant to the 2 pathogens was <7%. Since these 2 diseases are known to cause serious losses in eastern Australia, the results indicate further improvement in lucerne production can be obtained by increasing the proportion of individual plants in a cultivar resistant to both pathogens. This would be best achieved by identifying dominant sources of resistance and incorporating this into on-going lucerne breeding programs.