38 resultados para HUMAN-TUMOR CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD40 ligand (CD40-L), a member of the tumor necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. Interactions between CD40-L and CD40 induce B cell immunoglobulin production as well as monocyte activation and dendritic cell differentiation. Since these features characterize rheumatoid arthritis (RA), the expression and function of CD40-L in RA was examined. Freshly isolated RA peripheral blood (PB) and synovial fluid (SF)T cells expressed CD40-L mRNA as well as low level cell surface CD40-L. An additional subset of CD4+ RA SF T cells upregulated cell surface CD40-L expression within 15 min of in vitro activation even in the presence of cycloheximide, but soluble CD40-L was not found in SF. CD40-L expressed by RA T cells was functional, since RA PB and SF T cells but not normal PB T cells stimulated CD40-L-dependent B cell immunoglobulin production and dendritic cell IL-12 expression in the absence of prolonged in vitro T cell activation. In view of the diverse proinflammatory effects of CD40-L, this molecule is likely to play a central role in the perpetuation of rheumatoid synovitis. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of human cancers with an inherent antigen-processing defect due to a loss of peptide transporters (TAP-1 and TAP-2) and/or MHC class I antigen expression remains a considerable challenge. There is now an increasing realization that tumor cells with down-regulated expression of TAP and/or MHC class I antigens display strong resistance to cytotoxic T lymphocyte (CTL)mediated immune control, and often fail to respond to the conventional immunotherapeutic protocols based on active immunization with tumor-associated epitopes (TAE) or adoptive transfer of tumor-specific T cells, In the present study, we describe a novel approach based on immunization with either genetically modified tumor cells or naked DNA vectors encoding TAE fused to an endoplasmic reticulum (ER) signal sequence (ER-TAE) which affords protection against challenge by melanoma cells with down-regulated expression of TAP-1/2 and MHC class I antigens. In contrast, animals immunized with a vaccine based on TAE alone showed no protection against tumor challenge. Although MHC-peptide tetramer analysis showed a similar frequency of antigen-specific CTL in both ER-TAE- and TAE-immunized mice, functional analysis revealed that CTL activated following immunization with ER-TAE displayed significantly higher avidity for TAE when compared to animals immunized with the TAE alone, These observations provide a new strategy in anti-cancer vaccine design that allows activation of a highly effective and well-defined CTL response against tumors with down-regulated expression of TAP and MHC class I antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of natural killer T (NKT) cells in the immune response to tumor cells has been largely unexplored. As a model of adoptive tumor immunotherapy, cells from the draining lymph nodes of mice immunized with a tumor-specific or irrelevant antigen were transferred to naive recipients with established tumor. Inhibition of early tumor growth (day 4) required the transfer of both CD8(+) and Jalpha18(+) (NKT) cells from immunized animals without regard to immunogen. In contrast, CD8(+) cells, but not Jalpha18(+) cells, were necessary for the inhibition of late tumor growth (day 8). Thus, the developing tumor changes in sensitivity to NKT-mediated events and the role for NKT cells cannot be replaced by the presence of tumor-specific cells during early tumor growth. This suggests that recruitment/activation of Jalpha18(+) NKT cells is an important consideration during the immune therapy of early stage tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24(+)Vbeta11(+) NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4(+) NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of tumours of the germ line is increasing in the male population. This complex disease has a complex aetiology. We examine the contribution of genetic mutations to the development of germ line tumours in this review. In particular, we concentrate on fly and mouse experimental systems in order to demonstrate that mutations in some conserved genes cause pathologies typical of certain human germ cell tumours, whereas other mutations elicit phenotypes that are unique to the experimental model. Despite these experimental systems being imperfect, we show that they are useful models of human testicular germ cell tumourigenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To evaluate an antigen delivery system in which exogenous antigen can target the major histocompatibility complex (MHC) class I pathway, a single human papillomavirus (HPV) 16 E7 cytotoxic T lymphocyte (CTL) epitope and a single HIV gp160 CTL epitope were separately fused to the C-terminus or bovine papillomavirus 1 (BPV1) L1 sequence to form hybrid BPV1L1 VLPs. Mice immunized with these hybrid VLPs mounted strong CTL responses against the relevant target cells in the absence of any adjuvants. In addition, the CTL responses induced by immunization with BPV1L1/HPV16E7CTL VLPs protected mice against challenge with E7-transformed tumor cells. Furthermore, a high titer-specific antibody response against BPV1L1 VLPs was also induced, and this antiserum could inhibit papillomavirus-induced agglutination of mouse erythrocytes, suggesting that the antibody may recognize conformational determinates relevant to virus neutralization. These data demonstrate that hybrid BPV1L1 VLPs can be used as carriers to target antigenic epitopes to both the MHC class I and class II pathways, providing a promising strategy for the design of vaccines to prevent virus infection, with the potential to elicit therapeutic virus-specific CTL responses. (C) 1998 Academic Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma leaking from damaged retinal blood vessels can have a significant impact on the pathologies of the posterior segment of the eye. Inflammation in the eye and metabolic change resulting from diabetes mellitus causes vascular leakage with alteration of the phenotype of retinal pigment epithelial (RPE) cells and fibrocytes, resulting in changes in cell function. Phenotypically altered cells then significantly contribute to the pathogenesis of retinopathies by being incorporated into tractional membranes in the vitreous, where they secrete matrix molecules, such as fibronectin, and express altered cell surface antigens. We hypothesize that there is a direct relationship between the leaking of plasma and the proliferation and phenotypic change of RPE cells and fibroblasts, thus exacerbating the pathology of retinal disease. If the hypothesis is correct, control of vascular leakage becomes an important target of therapy in proliferative vitreoretinopathy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Perforin (pfp) and interferon-gamma (IFN-gamma) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-gamma were significantly less proficient than pfp- or IFN-gamma -deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-gamma -deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-gamma appeared to play an early role in protection from metastasis, Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1(+) T cells, Herein, both pfp and IFN-gamma played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells, Further analysis demonstrated that IFN-gamma, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-gamma, and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice, (C) 2001 by The American Society of Hematology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transfer of the herpes simplex virus type I thymidine kinase (HSV-TK) gene into tumor cells using virus-based vectors in conjunction with ganciclovir (GCV) exposure provides a potential gene therapy strategy for the treatment of cancer. Effective gene therapy,, depends on the efficient transfer and specific targeting of therapeutic genes and their protein products to target cells. The purpose of this study was to investigate the anti-tumor effect of Lentivirus-mediated and MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy in animal models. Mouse models were generated with intraperitoneal injection of human epithelial ovarian cancer cells 3AO, which are MUC1-positive. HTV-1-based lentiviral vectors carrying VP22-TK or scFv-VP22-TK were prepared. The animals were injected intraperitoneally with lentivirus containing scFv-VP22-TK, VP22-TK followed by GCV treatment. Combined treatment of lentivirus-expressed scFv-VP22-TK or VP22-TK with GCV inhibited the proliferation and prolonged survival times compared with the control vector. The survival time of animals treated with scFv-VP22-TK/GCV was significantly longer than that of animals treated with VP22-TK/GCV (p = 0.006). Conclusion: Our results suggest that MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy can efficiently inhibit ovarian tumor growth and increase survival in a nude mouse model of ovarian carcinoma. These data support the development of this method for human clinical trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

c-Myb is a transcription factor employed in the haematopoietic system and gastrointestinal tract to regulate the exquisite balance between cell division, differentiation and survival. In its absence, these tissues either fail to form, or show aberrant biology. Mice lacking a functional c-myb gene die in utero by day 15 of development. When inappropriately expressed, as is common in leukaemia and epithelial cancers of the breast, colon and gastro-oesophagus, c-Myb appears to activate gene targets of key importance to cancer progression and metastasis. These genes include cyclooxygenase-2 (COX-2), Bcl-2, Bcl-X-L and c-Myc, which influence diverse processes such as angiogenesis, proliferation and apoptosis. The clinical potential for blocking c-Myb expression in malignancies is based upon strong preclinical data and some trial-based evidence. The modest clinical experience to date has been with haematopoietic malignancies, but other disease classes may be amenable to similar interventions. The frontline agents to achieve this are nuclease-resistant oligodeoxynucleotides (ODNs), which are proving to be acceptable therapeutic reagents in terms of tolerable toxicities and delivery. Nevertheless, further effort must be focused on improving their efficacy, eliminating non-specific toxicity and optimising delivery. Optimisation issues aside, it would appear that anti-c-Myb therapies will be used with most success when combined with other agents, some of which will be established cytotoxic and differentiation-inducing drugs. This review will explore the future strategic use of ODNs in vivo, focusing on a wide spectrum of diseases, including several beyond the haematopoietic malignancies, in which c-Myb appears to play a role.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and A play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.