39 resultados para HRSV, G-protein
Resumo:
Tarramba leucaena (Leucaena leucocephala cv. Tarramba) foliage had per kilogram dry matter, 169 g protein and 29.8 g condensed tannins. Its value as a supplement, given either with or without urea, to sheep given a low-quality Callide Rhodes grass (Chloris gayana cv. Callide) hay was studied. Six rumen fistulated sheep (mean +/- s.d. liveweight, 34 +/- 1.4 kg) were used to compare 6 dietary treatments in an incomplete latin square design. Rhodes grass hay was given ad libitum either alone, or with urea 7 g/day (U), or with leucaena 150 g/day (L150), or leucaena with urea (L150U), or leucaena 300 g/day (L300), or leucaena with urea (L300U). Digestible organic matter intake was increased significantly by leucaena supplementation although digestibility of the whole diet did not alter. Rumen fluid ammonia-N was not altered by leucaena supplementation, but was increased by urea. This suggests that Tarramba foliage protein has some resistance to ruminal degradation. Liquid and solids passage rates were not affected by the treatments. Microbial nitrogen supply to the intestine (g/day), and the efficiency of microbial nitrogen synthesis (g/kg organic matter apparently digested in the rumen), were increased by leucaena supplementation (P
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.
Resumo:
Using a subtractive hybridisation approach, we enriched for genes likely to play a role in embryonic development of the mammalian face and other structures. This was achieved by subtracting cDNA derived from adult mouse liver from that derived from 10.5 dpc mouse embryonic branchial arches 1 and 2. Random sequencing of clones from the resultant library revealed that a high percentage correspond to genes with a previously established role in embryonic development and disease, while 15% represent novel or uncharacterised genes. Whole mount in situ hybridisation analysis of novel genes revealed that approximately 50% have restricted expression during embryonic development. In addition to expression in branchial arches, these genes showed a range of expression domains commonly including neural tube and somites. Notably, all genes analysed were found to be expressed not only in the branchial arches but also in the developing limb buds, providing support for the hypothesis that development of the limbs and face is likely to involve analogous molecular processes. (C) 2003 Wiley-Liss, Inc.
Resumo:
We analyzed the mouse Representative Transcript and Protein Set for molecules involved in brain function. We found full-length cDNAs of many known brain genes and discovered new members of known brain gene families, including Family 3 G-protein coupled receptors, voltage-gated channels, and connexins. We also identified previously unknown candidates for secreted neuroactive molecules. The existence of a large number of unique brain ESTs suggests an additional molecular complexity that remains to be explored. A list of genes containing CAG stretches in the coding region represents a first step in the potential identification of candidates for hereditary neurological disorders.
Resumo:
Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.
Resumo:
Galpha interacting protein (GAIP) is a regulator of G protein signaling protein that associates dynamically with vesicles and has been implicated in membrane trafficking, although its specific role is not yet known. Using an in vitro budding assay, we show that GAIP is recruited to a specific population of trans-Golgi network-derived vesicles and that these are distinct from coatomer or clathrin-coated vesicles. A truncation mutant (NT-GAIP) encoding only the N-terminal half of GAIP is recruited to trans -Golgi network membranes during the formation of vesicle carriers. Overexpression of NT-GAIP induces the formation of long, coated tubules, which are stabilized by microtubules. Results from the budding assay and from imaging in live cells show that these tubules remain attached to the Golgi stack rather than being released as carrier vesicles. NT-GAIP expression blocks membrane budding and results in the accumulation of tubular carrier intermediates. NT-GAIP-decorated tubules are competent to load vesicular stomatitis virus protein G-green fluorescent protein as post-Golgi, exocytic cargo and in cells expressing NT-GAIP there is reduced surface delivery of vesicular stomatitis virus protein G-green fluorescent protein. We conclude that GAIP functions as an essential part of the membrane budding machinery for a subset of post-Golgi exocytic carriers derived from the trans-Golgi network.
Resumo:
Transporters of Ca2+ are potential drug targets and Ca2+ is a useful signal in the assessment of G-protein-coupled receptor activation. Assays involving the assessment of intracellular Ca2+ using microplate readers most often use Ca2+ indicators which do not exhibit a spectra shift on Ca2+ binding (e.g. fluo-3). Indicators that do exhibit a spectral shift upon Ca2+ binding (e.g. fura-2) offer potential advantages for the calibration of intracellular Ca2+ levels. However, experimental limitations may limit the use of ratiometric dyes in microplate readers capable of screening. In this study, we compared the assessment of intracellular Ca2+ in adherent breast cancer cells using ratiometric and nonratiometric Ca2+ indicators. Our results demonstrate that both fluo-3 and fura-2 detect ATP dose-dependent increases in intracellular Ca2+ in the MCF-7 breast cancer cell line and that some of the limitations in the use of fura-2 appear to be overcome by the use of glass bottom microplates. The calibrated intracellular Ca2+ levels derived using fura-2 are consistent with those from microscopy and cuvette-based studies. Fura-2 may be useful in microplate studies, where cell lines with different properties are compared or where screening treatments lead to differences in the number of cells or dye loading. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The four mammalian golgins, p230/golgin-245, golgin-97, GCC88 and GCC185 are targeted to trans-Golgi network ITGN) membranes by their C-terminal GRIP domain in a G-protein-dependent process. The Arf-like GTPase, Arl1, has been shown to mediate TGN recruitment of p230/golgin245 and golgin-97 by interaction with their GRIP domains; however, it is not known whether all the TGN golgins bind to Arl1 and whether they are all recruited to the same or different TGN domains. Here we demonstrate differences in membrane binding properties and TGN domain recruitment of the mammalian GRIP domain proteins. Overexpression of full-length GCC185 resulted in the appearance of small punctate structures dispersed in the cytoplasm of transfected cells that were identified as membrane tubular structures by immunoelectron microscopy. The cytoplasmic GCC185-labelled structures were enriched for membrane binding determinants of GCC185 GRIP, whereas the three other mammalian GRIP family members did not colocalize with the GCC185-labelled structures. These GCC185-labelled structures included the TGN resident protein alpha2,6 sialyltransferase and excluded the recycling TGN protein, TGN46. The Golgi stack was unaffected by overexpression of GCC185. Overexpression of both full-length GCC185 and GCC88 showed distinct and nonoverlapping structures. We also show that the GRIP domains of GCC185 and GCC88 differ in membrane binding properties from each other and, in contrast to p230/golgin245 and golgin-97, do not interact with Arl1 in vivo. Collectively these results show that GCC88, GCC185 and p230/golgin245 are recruited to functionally distinct domains of the TGN and are likely to be important for the maintenance of TGN subdomain structure, a critical feature for mediating protein sorting and membrane transport.
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.
Resumo:
The role of p75 neurotrophin receptor (p75(NTR)) in mediating cell death is now well charaterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75(NTR) in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-(xL)), caspase-3, c-jun kinase, and p53 in the p75(NTR) cell death pathway is discussed and regulatory roles for the p75(NTR) ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.
Resumo:
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Resumo:
The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Protease activated receptors (PARs) are a category of G-protein coupled receptors (GPCRs) implicated in the progression of a wide range of diseases, including thrombosis, inflammatory disorders, and proliferative diseases. Signal transduction via PARs proceeds via an unusual activation mechanism. Instead of being activated through direct interaction with an extracellular signal like most GPCRs. they are self-activated following cleavage of their extracellular N-terminus by serine proteases to generate a new receptor N-terminus that acts as an intramolecular ligand by folding back onto itself and triggering receptor activation. Short synthetic peptides corresponding to this newly exposed N-terminal tethered ligand can activate three of the four known PARs in the absence of proteases. and such PAR activating peptides (PAR-APs) have served as templates for agonist/antagonist development. In fact much of the evidence for involvement of PARs in diseases has relied upon use of PAR-APs. often of low potency and uncertain selectivity. This review summarizes current structures of PAR agonists and antagonists, the need for more selective and more potent PAR ligands that activate or antagonize this intriguing class of receptors, and outlines the background relevant to PAR activation, assay methods, and physiological properties anticipated for PAR ligands.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3' leader-N-4a(P)-4b-M-G-L-5' trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus. (c) 2005 Elsevier B.V. All rights reserved.