19 resultados para Growing from Profits
Resumo:
Sugarcane crop residues ('trash') have the potential to supply nitrogen (N) to crops when they are retained on the soil surface after harvest. Farmers should account for the contribution of this N to crop requirements in order to avoid over-fertilisation. In very wet tropical locations, the climate may increase the rate of trash decomposition as well as the amount of N lost from the soil-plant system due to leaching or denitrification. A field experiment was conducted on Hydrosol and Ferrosol soils in the wet tropics of northern Australia using N-15-labelled trash either applied to the soil surface or incorporated. Labelled urea fertiliser was also applied with unlabelled surface trash. The objective of the experiment was to investigate the contribution of trash to crop N nutrition in wet tropical climates, the timing of N mineralisation from trash, and the retention of trash N in contrasting soils. Less than 6% of the N in trash was recovered in the first crop and the recovery was not affected by trash incorporation. Around 6% of the N in fertiliser was also recovered in the first crop, which was less than previously measured in temperate areas (20-40%). Leaf samples taken at the end of the second crop contined 2-3% of N from trash and fertilizer applied at the beginning of the experiment. Although most N was recovered in the 0-1.5 m soil layer there was some evidence of movement of N below this depth. The results showed that trash supplies N slowly and in small amounts to the succeeding crop in wet tropics sugarcane growing areas regardless of trash placement (on the soil surface or incorporated) or soil type, and so N mineralisation from a single trash blanket is not important for sugarcane production in the wet tropics.
Resumo:
A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice which account for 67% of the country’s total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers’ estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone rainfed lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought.
Resumo:
A large number of socio-economic research projects have been conducted in north Queensland which have drawn on observations from, or been otherwise inspired by, the Community Rainforest Reforestation Program (CRRP). The research may be considered under the headings of financial performance of farm-grown timber, externalities (or environmental values), impediments to tree planting on farms, analysis of the timber supply chain including timber marketing, and facilitation of forest industry development. This paper summarises a variety of insights generated by the research, on small-scale forestry based on native tree species and on policy measures which may be adopted to promote tree growing on farms in tropical north Queensland.
Resumo:
Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced burning of crop residues in the Australian sugar industry. Long term retention of residue is believed to improve soil fertility to the extent that nitrogen (N) fertilizer applications might be reduced by up to 40 kg N/ha/y. However, the fate of N in the extreme environment of the wet tropics is not known with certainty. Indices of potential N mineralisation and nitrification were developed and indicate that potential N fertility is greater in the wet tropics compared to more southern cane growing areas, and is enhanced under residue retention. Field results from the wet tropics support this prediction, but indicate high soil ammonium-N concentrations relative to nitrate-N.