53 resultados para Glutathione Synthetase
Resumo:
Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Deficiency of Glutathione S-transferases (GST) M1 and T1 are associated with chronic diseases (e.g. lung cancer, MS) and could be one factor for the risk for CHD.We conducted a pros-pective case-control study in 93 pts. with angiographically proven CHD and 161 controls matched for age ±2y and gender (resulting in n=91 pairs, of which 18 were female). Genes coding for functional GST M1 and T1 were analysed acoording to previously published methods. The association between GST M1, T1 was tested using Fisher's exact test; logistic regression analysis was performed to control for HDL-cholesterol, diabetes smoking, diabetes, hypertension. 41% of cases were smokers, 25% had diabetes and 68% hypertension, corresponding figures for controls were 31%, 13% and 33%. Mean HDL-cholesterol levels were comparable (pts: 46±14 mg/dl, controls: 43± 19 mg/dl). There was no overall significant correlation between functional GST T1 and M1 genotypes and CHD, however, there seems to be an association between GST M1, HDL-cholesterol and CHD. Larger studies are needed to verify these data.
Resumo:
Albicidins are a family of phytotoxins and antibiotics which play an important role in the pathogenesis of sugarcane leaf scald disease. The albA gene from Klebsiella oxytoca encodes a protein which inactivates albicidin by heat-reversible binding. Albicidin ligand binding to a recombinant AlbA protein, purified by means of a glutathione S-transferase gene fusion system, is an almost instant and saturable reaction. Kinetic and stoichiometric analysis of the binding reaction indicated the presence of a single high affinity binding site with a dissociation constant of 6.4 x 10(-8) M. The AlbA-albicidin complex is stable from 4 to 40 degrees C, from ph 5 to 9 and in high salt solutions. Treatment with protein denaturants released all bound albicidin. These properties indicate that AlbA may be a useful affinity matrix for selective purification of albicidin antibiotics. AlbA does not bind to p-nitrophenyl butyrate or alpha-naphthyl butyrate, the substrates of the albicidin detoxification enzyme AlbD from Pantoea dispersa. The potential exists to pyramid genes for different mechanisms in transgenic plants to protect plastid DNA replication from inhibition by albicidins.
Resumo:
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in (NaHCO3)-C-14 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4+ was first assimilated into C-14-glutamate and C-14-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol(-1)) of C-14-glutamate and C-14-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4+ was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. C-14-alpha-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of C-14-glutamate in the host tissue, but no C-14-glutamine was detected in the host fraction. The C-14-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4+. The free aminoacid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4+ was initially assimilated by the zooxanthellae of A. pulchella.
Resumo:
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.
Resumo:
Mycobacterium tuberculosis is an important pathogen of mammals that relies on 2-hydroxyphenyloxazoline-containing siderophore molecules called mycobactins for the acquisition of iron in the restrictive environment of the mammalian macrophage, These compounds have been proposed to be biosynthesized through the action of a cluster of genes that include both nonribosomal peptide synthase and polyketide synthase components. One of these genes encodes a protein, MbtB, that putatively couples activated salicylic acid with serine or threonine and then cyclizes this precursor to the phenyloxazoline ring system. We have used gene replacement through homologous recombination to delete the mbtB gene and replace this with a hygromycin-resistance cassette in the virulent strain of M. tuberculosis H37Rv, The resulting mutant is restricted for growth in iron-limited media but grows normally in iron-replete media. Analysis of siderophore production by this organism revealed that the biosynthesis of all salicylate-derived siderophores was interrupted. The mutant was found to be impaired for growth in macrophage-like THP-1 cells, suggesting that siderophore production is required for virulence of M. tuberculosis, These results provide conclusive evidence linking this genetic locus to siderophore production.
Resumo:
Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.
Resumo:
Reactive oxygen species (ROS) contribute significantly to myocardial ischaemia-reperfusion (I-R) injury. Recently the combination of the antioxidants vitamin E (VE) and alpha-lipoic acid (alpha-LA) has been reported to improve cardiac performance and reduce myocardial lipid peroxidation during in vitro I-R. The purpose of these experiments was to investigate the effects of VE and alpha-LA supplementation on cardiac performance, incidence of dysrhythmias and biochemical alterations during an in vivo myocardial I-R insult. Female Sprague-Dawley rats (4-months old) were assigned to one of the two dietary treatments: (1) control diet (CON) or (2) VE and alpha-LA supplementation (ANTIOXID). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU VE kg(-1) diet. The ANTIOXID diet contained 10 000 IU VE kg(-1) diet and 1.65 g alpha-LA kg(-1) diet. After the 14-week feeding period, significant differences (P < 0.05) existed in mean myocardial VE levels between dietary groups. Animals in each experimental group were subjected to an in vivo I-R protocol which included 25 min of left anterior coronary artery occlusion followed by 10 min of reperfusion. No group differences (P > 0.05) existed in cardiac performance (e.g. peak arterial pressure or ventricular work) or the incidence of ventricular dysrhythmias during the I-R protocol. Following I-R, two markers of lipid peroxidation were lower (P < 0.05) in the ANTIOXID animals compared with CON. These data indicate that dietary supplementation of the antioxidants, VE and alpha-LA do not influence cardiac performance or the incidence of dysrhythmias but do decrease lipid peroxidation during in viva I-R in young adult rats.
Resumo:
P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.
Resumo:
Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island, Australia, which resulted in the hospitalization of 148 people. We have screened 13 C. raciborskii isolates from various regions of Australia and shown that both toxic and nontoxic strains exist within this species. No association was observed between geographical origin and toxin production. Polyketide synthases (PKSs) and peptide synthetases (PSs) are enzymes involved in secondary metabolite biosynthesis in cyanobacteria. Putative PKS and PS genes from C. raciborskii strains AWT205 and CYPO2OB were identified by PCR using degenerate primers based on conserved regions within each gene. Examination of the strain-specific distribution of the PKS and PS genes in C. raciborskii isolates demonstrated a direct link between the presence of these two genes and the ability to produce cylindrospermopsin. Interestingly, the possession of these two genes was also linked. They were also identified in an Anabaena bergii isolate that was demonstrated to produce cylindrospermopsin. Taken together, these data suggest a likely role for these determinants in secondary metabolite and toxin production by C. raciborskii. (C) 2001 John Wiley & Sons, Inc.