194 resultados para Genetic composition
Resumo:
Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.
Resumo:
Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17.1-34.2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L-2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Z(c)) instead of 50 kHz (Z(50)) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L-2/Z(50) explained a significant proportion of variation in the masses of body water (r(2) 0.64), protein (r(2) 0.34) and fat (r(2) 0.35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65-90 % of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L-2/Z(50).
Resumo:
Gas sorption by coal is closely related to its physical and chemical properties, which are, in turn, governed by coal type and rank. The role of coal type (sensu maceral composition) is not fully established but it is clear that coal type may affect both adsorption capacity and desorption rate. Adsorption capacity is closely related to micropore (pores <2 nm) development, which is rank and maceral dependent. Adsorption isotherms indicate that in most cases bright (vitrinite-rich) coals have a greater adsorption capacity than their dull (often inertinite-rich) equivalents. However, no differences, or even the opposing trend, may be observed in relation to coal type. Desorption rate investigations have been performed using selected bright and dull coal samples in a high pressure microbalance. Interpretation of results using unipore spherical and bidisperse pore models indicate the importance of the pore structure. Bright, vitrinite-rich coals usually have the slowest desorption rates which is associated with their highly microporous structure. However, rapid desorption in bright coals may be related to development of extensive, unmineralised fracture systems. Both macro-and micro-pore systems are implicated in the more rapidly desorbing dull coals. Some dull, inertinite-rich coals may rapidly desorb due to a predominance of large, open cell lumina. Mineral matter is essentially nonadsorbent to coal gases and acts as a simple diluent. However, mineral-rich coals may be associated with more rapid desorption. Coal rank and type (maceral composition) per se do not appear to be the critical factors in controlling gas sorption, but rather the influence they exert over pore structure development. (C) 1998 Elsevier Science B.V.
Resumo:
Surveys of commercial soybean fields, disease nurseries, and trial plots of soybean were conducted throughout eastern Australia between 1979 and 1996, and 694 isolates of Phytophthora sojae were collected and classified into races. Fourteen races, 1, 2, 4, 10, 15, and 25, and eight new races, 46 to 53, were identified, but only races 1, 4, 15, 25, 46, and 53 were found in commercial fields. Races 1 and 15 were the only races found in commercial fields in the soybean-growing areas of Australia up until 1989, with race 1 being the dominant race. Race 4 was found in central New South Wales in 1989 on cultivars with the Rps1a gene, and it is now the dominant race in central and southern New South Wales. Races 46 and 53 have only been found once, in southern New South Wales, and race 25 was identified in the same region in 1994 on a cultivar with the Rps1k gene. Only races 1 and 15 have been found in the northern soybean-growing regions, with the latter dominating, which coincides with the widespread use of cultivars with the Rps2 gene. Changes in the race structure of the P. sojae population from commercial fields in Australia follow the deployment of specific resistance genes.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Allozyme variation in species of the mangrove genus Avicennia was screened in 25 populations collected from 22 locations in the Indo-West Pacific and eastern North America using 11 loci. Several fixed gene differences supported the specific status of Avicennia alba, A. integra, A. marina, and A. rumphiana from the Indo-West Pacific, and A. germinans from the Atlantic-East Pacific. The three varieties of A. marina, var. marina, var. eucalyptifolia, and var. australasica, had higher genetic similarities (Nei's I) and no fixed gene differences, confirming their conspecific status. Strong genetic structuring was observed in A. marina, with sharp changes in gene frequencies at the geographical margins of varietal distributions. The occurrence of alleles found otherwise in only one variety, in only immediately adjacent populations of another variety, provided evidence of introgession between varieties. The varieties appear to have diverged recently in the Pleistocene and are apparently not of ancient Cretaceous origin, as suggested earlier. Despite evidence of high degrees of outcrossing, gene flow among populations was relatively low (N(e)m less than or equal to 1-2), except where populations were geographically continuous, questioning assumptions that these widespread mangrove species achieve high levels of long-distance dispersal.
Resumo:
New techniques in air-displacement plethysmography seem to have overcome many of the previous problems of poor reproducibility and validity. These have made body-density measurements available to a larger range of individuals, including children, elderly and sick patients who often have difficulties in being submerged underwater in hydrodensitometry systems. The BOD POD air-displacement system (BOD POD body composition system; Life Measurement Instruments, Concord, CA, USA) is more precise than hydrodensitometry, is simple and rapid to operate (approximately 1 min measurements) and the results agree closely with those of hydrodensitometry (e.g. +/-3.4% for estimation of body fat). Body line scanners employing the principles of three-dimensional photography are potentially able to measure the surface area and volume of the body and its segments even more rapidly (approximately 10 s), but the validity of the measurements needs to be established. Advances in i.r. spectroscopy and mathematical modelling for calculating the area under the curve have improved precision for measuring enrichment of (H2O)-H-2 in studies of water dilution (CV 0.1-0.9% within the range of 400-1000 mu l/l) in saliva, plasma and urine. The technique is rapid and compares closely with mass spectrometry (bias 1 (SD 2) %). Advances in bedside bioelectrical-impedance techniques are making possible potential measurements of skinfold thicknesses and limb muscle mass electronically. Preliminary results suggest that the electronic method is more reproducible (intra-and inter-individual reproducibility for measuring skinfold thicknesses) and associated with less bias (+ 12%), than anthropometry (+ 40%). In addition to these selected examples, the 'mobility' or transfer of reference methods between centres has made the distinction between reference and bedside or field techniques less distinct than in the past.
Resumo:
Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m(2) respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and IO-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias:thigh, -12%; calf, 5%) and adipose tissue (bias:thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20-77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.
Resumo:
This study used allozyme and mitochondrial DNA variation to examine genetic structure in the Oxleyan Pygmy Perch Nannoperca oxleyana. This small-bodied freshwater fish has a very restricted distribution occurring only in some small coastal streams in south-east Queensland and northern New South Wales. It was expected that subpopulations may contain little genetic variation and be highly differentiated from one another. The results, based on allozyme and mitochondrial DNA control region variation were in agreement with these expectations. Allozyme variation was very low overall, with only one locus showing variation at most sites. The high differentiation was because a different locus tended to be polymorphic at each site. Mitochondrial variation within sites was also low, but some sites had unique haplotypes. The patterns of similarity among mitochondrial DNA haplotypes were not as expected from geographical proximity alone. In particular, although some northern sites had unique haplotypes, four sites spread along 200 km of coastline were remarkably similar, sharing the same common haplotype at similar frequencies. We suggest that these four streams may have had a confluence relatively recently, possibly when sea levels were lower, 8000-10 000 BP.
Resumo:
The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.
Resumo:
The evolution of a positive genetic correlation between male and female components of mate recognition systems will result as a consequence of assortative mating and, in particular, is central to a number of theories of sexual selection. Although the existence of such genetic correlations has been investigated in a number of taxa, it has yet to be shown that such correlations evolve and whether they may evolve as rapidly as suggested by sexual selection models. In this study, I used a hybridization experiment to disrupt natural mate recognition systems and then observed the subsequent evolutionary dynamics of the genetic correlation between male and female components for 56 generations in hybrids between Drosophila serrata and Drosophila birchii. The genetic correlation between male and female components evolved from 0.388 at generation 5 to 1.017 at generation 37 and then declined to -0.040 after a further 19 generations. These results indicated that the genetic basis of the mate recognition system in the hybrid populations evolved rapidly. The initial rapid increase in the genetic correlation was consistent with the classic assumption that male and female components will coevolve under sexual selection. The subsequent decline in genetic correlation may be attributable to the fixation of major genes or, alternatively, may be a result of a cyclic evolutionary change in mate recognition.