51 resultados para Generalized hypergeometric polynomials
Resumo:
Grobner bases have been generalised to polynomials over a commutative ring A in several ways. Here we focus on strong Grobner bases, also known as D-bases. Several authors have shown that strong Grobner bases can be effectively constructed over a principal ideal domain. We show that this extends to any principal ideal ring. We characterise Grobner bases and strong Grobner bases when A is a principal ideal ring. We also give algorithms for computing Grobner bases and strong Grobner bases which generalise known algorithms to principal ideal rings. In particular, we give an algorithm for computing a strong Grobner basis over a finite-chain ring, for example a Galois ring.
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.
Resumo:
Time-dependent wavepacket evolution techniques demand the action of the propagator, exp(-iHt/(h)over-bar), on a suitable initial wavepacket. When a complex absorbing potential is added to the Hamiltonian for combating unwanted reflection effects, polynomial expansions of the propagator are selected on their ability to cope with non-Hermiticity. An efficient subspace implementation of the Newton polynomial expansion scheme that requires fewer dense matrix-vector multiplications than its grid-based counterpart has been devised. Performance improvements are illustrated with some benchmark one and two-dimensional examples. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We assessed the effectiveness of two generalized visual training programmes in enhancing visual and motor performance for racquet sports. Forty young participants were assigned equally to groups undertaking visual training using Revien and Gabor's Sports Vision programme (Group 1), visual training using Revien's Eyerobics (Group 2), a placebo condition involving reading (Group 3) and a control condition involving physical practice only (Group 4). Measures of basic visual function and of sport-specific motor performance were obtained from all participants before and immediately after a 4-week training period. Significant pre- to post-training differences were evident on some of the measures; however, these were not group-dependent. Contrary to the claims made by proponents of generalized visual training, we found no evidence that the visual training programmes led to improvements in either vision or motor performance above and beyond those resulting simply from test familiarity.
Resumo:
The known permutation behaviour of the Dickson polynomials of the second kind in characteristic 3 is expanded and simplified. (C) 2002 Elsevier Science (USA).
Resumo:
A new class of bilinear permutation polynomials was recently identified. In this note we determine the class of permutation polynomials which represents the functional inverse of the bilinear class.
Resumo:
Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
We present two integrable spin ladder models which possess a general free parameter besides the rung coupling J. The models are exactly solvable by means of the Bethe ansatz method and we present the Bethe ansatz equations. We analyze the elementary excitations of the models which reveal the existence of a gap for both models that depends on the free parameter. (C) 2003 American Institute of Physics.
Resumo:
A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.
Resumo:
The paper identifies the structural restrictions on preferences required for them to exhibit both translation homotheticity in particular direction and radial homotheticity. The results are illustrated by an application to an asset allocation problem in the absence of riskless asset.