19 resultados para GERMPLASM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A regional (Oceania) core collection for taro germplasm has been developed based on phenotypic and molecular characterization. In total, 2199 accessions of taro germplasm have been collected by TaroGen (Taro Genetic Resources: Conservation and Utilisation) from 10 countries in Oceania: Papua New Guinea, Solomon Islands, Vanuatu, New Caledonia, Fiji, Palau, Niue, Tonga, Cook Islands and Samoa. Our objective was to select 10% from each country to contribute to a regional core. The larger collections from Papua New Guinea, Vanuatu and New Caledonia were analysed based on phenotypic characters, and a diverse subset representing 20% of these collections was fingerprinted. A diverse 20% subsample was also taken from the Solomon Islands. All accessions from the other six countries were fingerprinted. In total, 515 accessions were genotyped (23.4% overall) using taro specific simple sequence repeat (SSR) markers. DNA fingerprint data showed that great allelic diversity existed in Papua New Guinea and the Solomon Islands. Interestingly, rare alleles were identified in taros from the Solomon Islands province of Choiseul which were not observed in any of the other collections. Overall, 211 accessions were recommended for inclusion in the final regional core collection based on the phenotypic and molecular characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Centre for Native Floriculture (CNF) commenced in May 2003 at The University of Queensland, Gatton. The CNF is a joint initiative with the Queensland State Government, with funding for an initial 3-year period. The phase-out of bush-picking under the South East Queensland Forests Agreement was a catalyst for the Centres establishment. The CNF vision is: ‘to help create an internationally competitive and environmentally sustainable native floriculture industry that provides significant employment opportunities in Queensland’. The Centre is comprised of three research, development and extension programs. The Value Chain Program assists native floriculture industry groups in developing efficient consumer-orientated production, handling and marketing systems for select high potential species. These value chain systems will serve as models for realizing the market potential of and regional fiscal returns on other native ornamental species identified as crop ideotypes that are sought after by end-users (e.g. florists). The Floriculture Program supports the value chain by working to enhance germplasm for the native floriculture industry through selection and breeding, optimize cultivation protocols and overcome any technical barriers that arise. Such barriers include propagation constraints, disease problems and post-harvest limitations. The Capacity Building Program operates to transfer technology and other skills (e.g. value chain management principles) to industry members, train operatives for the industry and promote native floriculture. Conservation of native flora is encouraged through cultivation and community engagement. Protection of biodiversity is advocated via regional production systems that spare natural areas and educate the public as to the biological, floricultural and aesthetic values of native flora. Eco-agricultural tourism focused on wildflowers both in nature and in cultivation is also advocated by the CNF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Asia, about 50% of all the rice land is rainfed and, although rice yields in irrigated systems have doubled and tripled over the past 30 years, only modest gains have occurred in rainfed rice systems. In part, this is because of the difficulty in improving rice varieties for environments that are heterogeneous and variable, and in part because there has been little effort to breed rice for drought tolerance. Information available for other cereals (for example, maize, Bänziger et al 2000) and for wheat and the limited or circumstantial evidence available for rice indicate that we can now breed varieties that have improved yield under drought and produce high yields in the good seasons. This manual aims to help plant breeders develop such varieties. While the manual focuses on drought tolerance, this must be integrated with the mainstream breeding program that also deals with agronomic adaptation, grain quality, and pest and disease resistance. Mackill et al (1996) have written a guide to the overall improvement of rice for rainfed conditions. This manual should be seen as an amplification of and updating of the section on drought tolerance in that book. Because final proof of many approaches for breeding drought-tolerant rice is not yet available, and because some aspects may not work in all environments and germplasm, we recommend that you use this manual with caution. Test the suggested approaches and only implement them on a large scale if they are effective and realistic for your own situation