45 resultados para Flying Dutchman
Resumo:
Objective To evaluate cardiac electrical function in the Spectacled Flying Fox (bat) infested with Ixodes holocyclus. Design Prospective clinical investigation of bats treated for naturally occurring tick toxicity. Procedure ECGs were performed on bats with tick toxicity (n = 33), bats that recovered slowly (n = 5) and normally (n = 5) following treatment for tick toxicity, and on normal bats with no history of tick toxicity (n = 9). Results Bats with tick toxicity had significantly prolonged corrected QT intervals, bradycardia and rhythm disturbances which included sinus bradydysrhythmia, atrial standstill, ventricular premature complexes, and idioventricular bradydysrhythmia. Conclusions The QT prolongation observed on ECG traces of bats with tick toxicity reflected delayed ventricular repolarisation and predisposed to polymorphic ventricular tachycardia and sudden cardiac death in response to sympathetic stimulation. The inability to document ventricular tachycardia in bats shortly before death from tick toxicity may be explained by a lack of sympathetic responsiveness attributable to the unique parasympathetic innervation of the bat heart, or hypothermiainduced catecholamine receptor down-regulation. Bradycardia and rhythm disturbances may be attributable to hypothermia.
Resumo:
We studied thalamic projections to the visual cortex in flying foxes, animals that share neural features believed to resemble those present in the brains of early primates. Neurones labeled by injections of fluorescent tracers in striate and extrastriate cortices were charted relative to the architectural boundaries of thalamic nuclei. Three main findings are reported: First, there are parallel lateral geniculate nucleus (LGN) projections to striate and extrastriate cortices. Second, the pulvinar complex is expansive, and contains multiple subdivisions. Third, across the visual thalamus, the location of cells labeled after visual cortex injections changes systematically, with caudal visual areas receiving their strongest projections from the most lateral thalamic nuclei, and rostral areas receiving strong projections from medial nuclei. We identified three architectural layers in the LGN, and three subdivisions of the pulvinar complex. The outer LGN layer contained the largest cells, and had strong projections to the areas V1, V2 and V3. Neurones in the intermediate LGN layer were intermediate in size, and projected to V1 and, less densely, to V2. The layer nearest to the origin of the optic radiation contained the smallest cells, and projected not only to V1, V2 and V3, but also, weakly, to the occipitotemporal area (OT, which is similar to primate middle temporal area) and the occipitoparietal area (OP, a third tier area located near the dorsal midline). V1, V2 and V3 received strong projections from the lateral and intermediate subdivisions of the pulvinar complex, while OP and OT received their main thalamic input from the intermediate and medial subdivisions of the pulvinar complex. These results suggest parallels with the carnivore visual system, and indicate that the restriction of the projections of the large- and intermediatesized LGN layers to V1, observed in present-day primates, evolved from a more generalized mammalian condition. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study reports observations on the collection and characteristics of semen from free-range populations of flying fox in Brisbane, Australia. Semen was successfully recovered by electroejaculation from 107 of 115 wild flying foxes (Pteropus alecto, Pteropus poliocephalus and Pteropus scapulatus). A proportion of ejaculates collected from all three species contained seminal vesicle secretions, the incidence of which appeared related to breeding season. Ejaculate volume was small (5-160 mu L), requiring a specialised collection vessel and immediate extension to avoid desiccation. Sperm morphological abnormalities and characteristics are described for the first time. In two species (P. scapulatus and P. alecto), sperm quality varied with breeding season. Dilution in Tris-citratefructose buffer and subsequent incubation (37 degrees C) of Pteropus semen for 2-3 h appeared to have a negative impact on sperm motility and the percentage of sperm with intact plasma membranes and acrosomes and represents a concern for the potential development and use of assisted breeding technology in these species. Preliminary attempts to develop a short-term chilled preservation protocol for flying fox semen revealed that spenn viability (percentage motility and percentage live sperm with intact acrosomes) was significantly reduced after 102 h chilled storage at 5 degrees C; nevertheless, approximately 40% of the spermatozoa were still motile and contained intact acrosomes. Glycerol was neither protective nor detrimental to sperm survival during chilled storage. Microbial flora of the prepuce, urethra and semen of all species were isolated and their antibiotic susceptibility tested. Tetracycline, penicillin, ciprofloxacin, and ceftazidime were the most effective antibiotics in preventing growth of all identified bacteria; however, their effects on sperm survival were not investigated. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Wildlife populations are affected by a series of emerging diseases, some of which pose a significant threat to their conservation. They can also be reservoirs of pathogens that threaten domestic animal and human health. In this paper, we review the ecology of two viruses that have caused significant disease in domestic animals and humans and are carried by wild fruit bats in Asia and Australia. The first, Hendra virus, has caused disease in horses and/or humans in Australia every five years since it first emerged in 1994. Nipah virus has caused a major outbreak of disease in pigs and humans in Malaysia in the late 1990s and has also caused human mortalities in Bangladesh annually since 2001. Increased knowledge of fruit bat population dynamics and disease ecology will help improve our understanding of processes driving the emergence of diseases from bats. For this, a transdisciplinary approach is required to develop appropriate host management strategies that both maximise the conservation of bat populations as well as minimise the risk of disease outbreaks in domestic animals and humans. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Flying foxes have been the focus of research into three newly described viruses from the order Mononegavirales, namely Hendra virus (HeV), Menangle virus and Australian Bat Lyssavirus (ABL). Early investigations indicate that flying foxes are the reservoir host for these viruses. In 1994, two outbreaks of a new zoonotic disease affecting horses and humans occurred in Queensland. The virus which was found to be responsible was called equine morbillivirus (EMV) and has since been renamed HeV. Investigation into the reservoir of HeV has produced evidence that antibodies capable of neutralising HeV have only been detected in flying foxes. Over 20% of flying foxes in eastern Australia have been identified as being seropositive. Additionally six species of flying foxes in Papua New Guinea have tested positive for antibodies to HeV. In 1996 a virus from the family Paramyxoviridae was isolated from the uterine fluid of a female flying fox. Sequencing of 10 000 of the 18 000 base pairs (bp) has shown that the sequence is identical to the HeV sequence. As part of investigations into HeV, a virus was isolated from a juvenile flying fox which presented with neurological signs in 1996. This virus was characterised as belonging to the family Rhabdoviridae, and was named ABL. Since then four flying fox species and one insectivorous species have tested positive for ABL. The third virus to be detected in flying foxes is Menangle virus, belonging to the family Paramyxoviridae. This virus was responsible for a zoonotic disease affecting pigs and humans in New South Wales in 1997. Antibodies capable of neutralising Menangle virus, were detected in flying foxes. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Large numbers of adults of certain species of butterfly flying in an apparently 'purposeful' manner are often noted by entomologists and the general public. Occasionally, these are recorded in the literature. Using these records we summarise information regarding the direction of movement in Australian butterflies and test whether there are consistent patterns that could account for known seasonal shifts in geographical range. The data were analysed using contingency tables and directionality statistics. Vanessa itea, Vanessa kershawi, Danaus plexippus, Danaus chrysippus and Badamia exclamationis flew predominately south in the spring-summer and north in the autumn-winter. Tirumala hamata has a strong southern component to its flight in spring but, as in Euploea core, appears non-directional in the autumn. For many supposedly known migratory species, the number of literature records are few, particularly in one season (mainly autumn). Thus, for Appias paulina, four of seven records were south in the spring-summer, as were six of nine records for Catopsilia pomona, and three of five for Zizina labradus. For Belenois java, flight records were only available for the spring and these showed geographical differences; predominantly north-west in northern Australia (Queensland) and south-west in southern Australia (Victoria, New South Wales). There were too few records for Papilio demoleus in the literature (four only) to draw any conclusions. Major exceptions to the seasonal trend of south in the spring and north in the autumn were Junonia villida, which showed a predominant north-westward direction in both seasons, and Eurema smilax, with a predominant southern or western flight in both seasons. We discuss these species specific trends in migration direction in relation to seasonal shifts in suitable habitat conditions, possible cues used in orientation and in timing changes in direction.
Resumo:
Restricted cochlear lesions in adult animals result in plastic changes in the representation of the lesioned cochlea, and thus in the frequency map, in the contralateral auditory cortex and thalamus. To examine the contribution of subthalamic changes to this reorganization, the effects of unilateral mechanical cochlear lesions on the frequency organization of the central nucleus of the inferior colliculus (ICC) were examined in adult cats. Lesions typically resulted in a broad high-frequency hearing loss extending from a frequency in the range 15-22 kHz. After recovery periods of 2.5-18 months, the frequency organization of ICC contralateral to the lesioned cochlea was determined separately for the onset and late components of multiunit responses to tone-burst stimuli. For the late response component in all but one penetration through the ICC, and for the onset response component in more than half of the penetrations, changes in frequency organization in the lesion projection zone were explicable as the residue of prelesion responses. In half of the penetrations exhibiting nonresidue type changes in onset-response frequency organization, the changes appeared to reflect the unmasking of normally inhibited inputs. In the other half it was unclear whether the changes reflected unmasking or a dynamic process of reorganization. Thus, most of the observed changes were explicable as passive consequences of the lesion, and there was limited evidence for plasticity in the ICC. The implications of the data with respect to the primary locus of the changes and to the manner in which they contribute to thalamocortical reorganization are considered. (C) 2003 Wiley-Liss, Inc.
Resumo:
The architectonic features of the thalamic ventrobasal complex (Vb) of two species of Megachiropteran (Grey-headed flying fox, Pteropus poliocephalus, and the Eastern tube-nosed bat, Nyctimene robinsoni) are compared with those of a Microchiropteran (Australian ghost bat, Macroderma gigas). The somatosensory system was chosen for comparison as it represents a sensory system that has undergone analogous modifications in both Chiropteran lineages (the evolution of the wing). The components of Vb were examined as there are taxon-specific features in this region of the brain. Within the Megachiropteran Vb, four subnuclei were recognized: the ventral posterior medial (VPM), the ventral posterior lateral (VPL), the ventral posterior inferior (VPI), and the basal ventral medial (VMb). In the ghost bat only VPM and VPL were identified with certainty. No VPI was evident in the ghost bat, however a putative VMb was observed. Vb of the ghost bat also lacked the arcuate lamina, which distinguishes VPM from VPL in the Megachiropterans and many other mammals. These taxon-specific differences lend support to the proposal that the order Chiroptera has a diphyletic origin.