32 resultados para Feynman integrals.
Resumo:
A new wavelet-based method for solving population balance equations with simultaneous nucleation, growth and agglomeration is proposed, which uses wavelets to express the functions. The technique is very general, powerful and overcomes the crucial problems of numerical diffusion and stability that often characterize previous techniques in this area. It is also applicable to an arbitrary grid to control resolution and computational efficiency. The proposed technique has been tested for pure agglomeration, simultaneous nucleation and growth, and simultaneous growth and agglomeration. In all cases, the predicted and analytical particle size distributions are in excellent agreement. The presence of moving sharp fronts can be addressed without the prior investigation of the characteristics of the processes. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Furthermore, a connection with perturbed conformal field theory is made.
Resumo:
Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.
Resumo:
A new wavelet-based adaptive framework for solving population balance equations (PBEs) is proposed in this work. The technique is general, powerful and efficient without the need for prior assumptions about the characteristics of the processes. Because there are steeply varying number densities across a size range, a new strategy is developed to select the optimal order of resolution and the collocation points based on an interpolating wavelet transform (IWT). The proposed technique has been tested for size-independent agglomeration, agglomeration with a linear summation kernel and agglomeration with a nonlinear kernel. In all cases, the predicted and analytical particle size distributions (PSDs) are in excellent agreement. Further work on the solution of the general population balance equations with nucleation, growth and agglomeration and the solution of steady-state population balance equations will be presented in this framework. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.
Resumo:
We report kinetic molecular sieving of hydrogen and deuterium in zeolite rho at low temperatures, using atomistic molecular dynamics simulations incorporating quantum effects via the Feynman-Hibbs approach. We find that diffusivities of confined molecules decrease when quantum effects are considered, in contrast with bulk fluids which show an increase. Indeed, at low temperatures, a reverse kinetic sieving effect is demonstrated in which the heavier isotope, deuterium, diffuses faster than hydrogen. At 65 K, the flux selectivity is as high as 46, indicating a good potential for isotope separation.
Resumo:
The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Monte Carlo and molecular dynamics simulations and neutron scattering experiments are used to study the adsorption and diffusion of hydrogen and deuterium in zeolite Rho in the temperature range of 30-150 K. In the molecular simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. We suggest a new set of potential parameters for hydrogen, which can be used when Feynman-Hibbs variational approach is used for quantum corrections. The dynamic properties obtained from molecular dynamics simulations are in excellent agreement with the experimental results and show significant quantum effects on the transport at very low temperature. The molecular dynamics simulation results show that the quantum effect is very sensitive to pore dimensions and under suitable conditions can lead to a reverse kinetic molecular sieving with deuterium diffusing faster than hydrogen.
Resumo:
We construct a set of functions, say, psi([r])(n) composed of a cosine function and a sigmoidal transformation gamma(r) of order r > 0. The present functions are orthonormal with respect to a proper weight function on the interval [-1, 1]. It is proven that if a function f is continuous and piecewise smooth on [-1, 1] then its series expansion based on psi([r])(n) converges uniformly to f so long as the order of the sigmoidal transformation employed is 0 < r
Resumo:
For some physics students, the concept of a particle travelling faster than the speed of light holds endless fascination, and. Cerenkov radiation is a visible consequence of a charged particle travelling through a medium at locally superluminal velocities. The Heaviside-Feynman equations for calculating the magnetic and electric fields of a moving charge have been known for many decades, but it is only recently that the computing power to plot the fields of such a particle has become readily available for student use. This paper investigates and illustrates the calculation of Maxwell's D field in homogeneous isotropic media for arbitrary, including superluminal, constant velocity, and uses the results as a basis for discussing energy transfer in the electromagnetic field.