40 resultados para Feedback Control Loop
Resumo:
We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.
Resumo:
This paper re-examines the stability of multi-input multi-output (MIMO) control systems designed using sequential MIMO quantitative feedback theory (QFT). In order to establish the results, recursive design equations for the SISO equivalent plants employed in a sequential MIMO QFT design are established. The equations apply to sequential MIMO QFT designs in both the direct plant domain, which employs the elements of plant in the design, and the inverse plant domain, which employs the elements of the plant inverse in the design. Stability theorems that employ necessary and sufficient conditions for robust closed-loop internal stability are developed for sequential MIMO QFT designs in both domains. The theorems and design equations facilitate less conservative designs and improved design transparency.
Resumo:
Fed-batch fermentation is used to prevent or reduce substrate-associated growth inhibition by controlling nutrient supply. Here we review the advances in control of fed-batch fermentations. Simple exponential feeding and inferential methods are examined, as are newer methods based on fuzzy control and neural networks. Considerable interest has developed in these more advanced methods that hold promise for optimizing fed-batch techniques for complex fermentation systems. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
We demonstrate that the dynamics of an autonomous chaotic laser can be controlled to a periodic or steady state under self-synchronization. In general, past the chaos threshold the dependence of the laser output on feedback applied to the pump is submerged in the Lorenz-like chaotic pulsation. However there exist specific feedback delays that stabilize the chaos to periodic behavior or even steady state. The range of control depends critically on the feedback delay time and amplitude. Our experimental results are compared with the complex Lorenz equations which show good agreement.
Resumo:
The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.
Resumo:
The primary purpose of this experiment was to determine if left hand reaction time advantages in manual aiming result from a right hemisphere attentional advantage or an early right hemisphere role in movement preparation. Right-handed participants were required to either make rapid goal-directed movements to small targets or simply lift their hand upon target illumination. The amount of advance information about the target for a particular trial was manipulated by precuing a subset of potential targets prior to the reaction time interval. When participants were required to make aiming movements to targets in left space, the left hand enjoyed a reaction advantage that was not present for aiming in right space: or simple finger lifts. This advantage was independent of the amount or type of advance information provided by the precue. This finding supports the movement planning hypothesis. With respect to movement execution, participants completed their aiming movements more quickly when aiming with their right hand, particularly in right space. This right hand advantage in right space was due to the time required to decelerate the movement and to make feedback-based adjustments late in the movement trajectory. (C) 2001 Academic Press.
Resumo:
We derive optimal N-photon two-mode input states for interferometric phase measurements. Under canonical measurements the phase variance scales as N-2 for these states, as compared to N-1 or N-1/2 for states considered bq previous authors. We prove, that it is not possible to realize the canonical measurement by counting photons in the outputs of the interferometer, even if an adjustable auxiliary phase shift is allowed in the interferometer. However. we introduce a feedback algorithm based on Bayesian inference to control this auxiliary phase shift. This makes the measurement close to a canonical one, with a phase variance scaling slightly above N-2. With no feedback, the best result (given that the phase to be measured is completely unknown) is a scaling of N-1. For optimal input states having up to four photons, our feedback scheme is the best possible one, but for higher photon numbers more complicated schemes perform marginally better.
Resumo:
Control of chaotic vibrations in a dual-spin spacecraft with an axial nutational damper is achieved using two techniques. The control methods are implemented on two realistic spacecraft parameter configurations that have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude motion and, consequently, could have disastrous effects on its operation. The two control methods, recursive proportional feedback and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamic systems. Each technique is outlined and the effectiveness on this model compared and contrasted. Numerical simulations are performed, and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents, and bifurcation diagrams.
Resumo:
CD40 is a key signaling pathway for the function of B cells, monocytes, and dendritic cells in the immune system, and plays an important role in inflammatory pathways of nonhemopoietic cells. The NFkappaB family of transcription factors is a critical mediator in inflammation. NFkappaB is involved both in the regulation of CD40 expression and in cell signaling after CD40 ligation. This positive feedback loop linking NFkappaB and CD40 plays an important role in the control of the adaptive immune response, with fundamental implications for immunity and tolerance in vivo.
Resumo:
For dynamic closed loop control of a multilevel converter with a low pulse number (ratio of switching frequency to synthesized fundamental), natural sampled pulse-width modulation (PWM) is the best form of modulation. Natural sampling does not introduce distortion or a delayed response to the modulating signal. However previous natural sampled PWM implementations have generally been analog. For a modular multilevel converter, a digital implementation has advantages of accuracy and flexibility. Re-sampled uniform PWM is a novel digital modulation technique which approaches the performance of natural PWM. Both hardware and software implementations for a five level multilevel converter phase are presented, demonstrating the improvement over uniform PWM.
Resumo:
The present research investigated the effect of performance feedback on the modulation of the acoustic startle reflex in a Go/NoGo reaction time task. Experiment 1 (n = 120) crossed warning stimulus modality (acoustic, visual, and tactile) with the provision of feedback in a between subject design. Provision of performance feedback increased the number of errors committed and reduced reaction time, but did not affect blink modulation significantly. Attentional blink latency and magnitude modulation was larger during acoustic than during visual and larger during visual than during tactile warning stimuli. In comparison to control blinks, latency shortening was significant in all modality conditions whereas magnitude facilitation was not significant during tactile warning stimuli. Experiment 2 (n = 80) employed visual warning stimuli only and crossed the provision of feedback with task difficulty. Feedback and difficulty affected accuracy and reaction time. Whereas blink latency shortening was not affected, blink magnitude modulation was smallest in the Easy/No Feedback and the Difficult/Feedback conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper reexamines the stability of uncertain closed-loop systems resulting from the nonsequential (NS) MIMO QFT design methodology. By combining the effect of satisfying both the robust stability and robust performance specifications in a NS MIMO QFT design, a proof for the stability of the uncertain closed-loop system is derived. The stability theorem proves that, subject to the satisfaction of a critical necessary and sufficient condition, the original NS MIMO QFT design methodology will provide a robustly stable closed-loop system. This necessary and sufficient condition provides a useful existence test for a successful NS MIMO QFT design. The results expose the salient features of the NS MIMO QFT design methodology. Two 2 x 2 MIMO design examples are presented to illustrate the key features of the stability, theorem.