69 resultados para Fault Currents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communications devices for government or military applications must keep data secure, even when their electronic components fail. Combining information flow and risk analyses could make fault-mode evaluations for such devices more efficient and cost-effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping 6 away from half-filling, finite-system density-matrix renormalizationgroup (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k(F) and 4k(F) for the currents and densities, where 2k(F) = pi(1 - delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the first attempt to constrain the evolution of the North Anatolian Fault Zone (NAFZ) by age dating and isotope tracing of clay minerals formed during near-surface faulting. Extensive illitic clay mineralisation occurred along the NAFZ related to hydrothermal alteration of the fault gouges and pseudotachylytes. Samples representing the pre-fault protoliths outside the fault zone do not contain authigenic illitic clay minerals indicating that hydrothermal processes were confined to the areas within the fault zone. K-Ar age data indicate that the hydrothermal system and the associated illite authigenesis initiated at similar to 57 Ma. This process is interpreted to reflect the onset of significant strike-slip or transtensional faulting immediately after the continental collision related to the closure of the Neotethys Ocean. Following the initiation of the fault movements in the latest Paleocene-Early Eocene, displacements along the NAFZ have continued, with probably intensified fault activities at similar to 26 Ma and later than similar to 8 Ma. Oxygen isotope compositions of the illitic clays from different locations along the NAFZ are similar, with narrow ranges in delta O-18 values indicating clay precipitation from fluids with similar oxygen isotope compositions and crystallisation temperatures. The delta O-18 and delta D values of the calculated fluid isotopic composition (delta O-18=5.9 parts per thousand to 11.2 parts per thousand, delta D=-59 parts per thousand to -73 parts per thousand) are consistent with metamorphic and magmatic origin of fluids mobilised during active tectonism. The interpretation of the fluid flow history of the NAFZ is in agreement with that reported previously for some well-known large-scale high-angle fault zones, which similarly developed along collisional-type orogenic belts and are commonly associated with significant mesothermal ore mineralisation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To foster ongoing international cooperation beyond ACES (APEC Cooperation for Earthquake Simulation) on the simulation of solid earth phenomena, agreement was reached to work towards establishment of a frontier international research institute for simulating the solid earth: iSERVO = International Solid Earth Research Virtual Observatory institute (http://www.iservo.edu.au). This paper outlines a key Australian contribution towards the iSERVO institute seed project, this is the construction of: (1) a typical intraplate fault system model using practical fault system data of South Australia (i.e., SA interacting fault model), which includes data management and editing, geometrical modeling and mesh generation; and (2) a finite-element based software tool, which is built on our long-term and ongoing effort to develop the R-minimum strategy based finite-element computational algorithm and software tool for modelling three-dimensional nonlinear frictional contact behavior between multiple deformable bodies with the arbitrarily-shaped contact element strategy. A numerical simulation of the SA fault system is carried out using this software tool to demonstrate its capability and our efforts towards seeding the iSERVO Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sliding and rolling are two outstanding deformation modes in granular media. The first one induces frictional dissipation whereas the latter one involves deformation with negligible resistance. Using numerical simulations on two-dimensional shear cells, we investigate the effect of the grain rotation on the energy dissipation and the strength of granular materials under quasistatic shear deformation. Rolling and sliding are quantified in terms of the so-called Cosserat rotations. The observed spontaneous formation of vorticity cells and clusters of rotating bearings may provide an explanation for the long standing heat flow paradox of earthquake dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain localisation is a widespread phenomenon often observed in shear and compressive loading of geomaterials, for example, the fault gouge. It is believed that the main mechanisms of strain localisation are strain softening and mismatch between dilatancy and pressure sensitivity. Observations show that gouge deformation is accompanied by considerable rotations of grains. In our previous work as a model for gouge material, we proposed a continuum description for an assembly of particles of equal radius in which the particle rotation is treated as an independent degree of freedom. We showed that there exist critical values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-surface layers of the fault, even in the absence of inelasticity. Here, we generalise the model to the case of finite deformations characteristic for the gouge deformation. We derive objective constitutive relationships relating the Jaumann rates of stress and moment stress to the relative strain and curvature rates, respectively. The model suggests that the pattern of localisation remains the same as in the linear case. However, the presence of the Jaumann terms leads to the emergence of non-zero normal stresses acting along and perpendicular to the shear layer (with zero hydrostatic pressure), and localised along the mid-line of the gouge; these stress components are absent in the linear model of simple shear. These additional normal stresses, albeit small, cause a change in the direction in which the maximal normal stresses act and in which en-echelon fracturing is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.