83 resultados para Fatty liver disease
Resumo:
The close association of excessive alcohol consumption and clinical expression of hemochromatosis has been of widespread interest for many years. In most populations of northern European extraction, more than 90% of patients with overt hemochromatosis are homozygous for the C282Y mutation in the HFE gene. Nevertheless, the strong association of heavy alcohol intake with the clinical expression of hemochromatosis remains. We (individually or in association with colleagues from our laboratories) have performed three relevant studies in which this association was explored. In the first, performed in 1975 before the cloning of the HFE gene, the frequency of clinical symptoms and signs was compared in patients with classical hemochromatosis who consumed 100 g or more of alcohol per day versus in nondrinkers or moderate drinkers who consumed less than 100 g of alcohol per day. The results showed no difference between the two groups except for features of complications of alcoholism in the first group, especially jaundice, peripheral neuritis, and hepatic failure. Twenty-five percent of those with heavy alcohol consumption showed histologic features of alcoholic liver disease (including cirrhosis) together with heavy iron overload. It was concluded that these patients had the genetic disease complicated by alcoholic liver disease. In the second study (2002), 206 subjects with classical HFE-associated hemochromatosis in whom liver biopsy had been performed were evaluated to quantify the contribution of excess alcohol consumption to the development of cirrhosis in hemochromatosis. Cirrhosis was approximately nine times more likely to develop in subjects with hemochromatosis who consumed more than 60 g of alcohol per day than in those who drank less than this amount. In the third study (2002), 371 C282Y-homozygous relatives of patients with HFE-associated hemochromatosis were assessed. Eleven subjects had cirrhosis on liver biopsy and four of these drank 60 g or more of alcohol per day. The reason why heavy alcohol consumption accentuates the clinical expression of hemochromatosis is unclear. Increased dietary iron or increased iron absorption is unlikely. The most likely explanation would seem to be the added co-factor effect of iron and alcohol, both of which cause oxidative stress, hepatic stellate cell activation, and hepatic fibrogenesis. In addition, the cumulative effects of other forms of liver injury may result when iron and alcohol are present concurrently. Clearly, the addition of dietary iron in subjects homozygous for hemochromatosis would be unwise. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The liver plays a major role in the body's metabolism and, as such, is subject to a multitude of insults-infectious, toxic, metabolic, nutritional, traumatic, and neoplastic. Consequently, liver disease is not uncommon in avian and other exotic patients. As diagnostic modalities (and our experience in using them and interpreting them) improve, veterinarian are becoming more aware of the presence of (often subclinical) liver disease in their patients, and often of the specific nature of that disease. Through new research, veterinarians also are more able to appreciate the liver's unique function and metabolism and the role it plays in the function of the body as a whole. This understanding has led to a better awareness of how the liver responds to disease, and this has allowed refinements in the treatment of diseased and damaged livers. However, treating liver disease is not just about treating the organ; the patient as a whole must be supported and treated until a successful resolution has been achieved. Treatment therefore must be aimed at supporting the patient, treating the specific condition, and creating an environment that allows the liver to heal and regenerate. This article briefly reviews the anatomy and physiology of the liver and how it responds to insult. Treatment of liver disease then is discussed using the aims described above. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Focal biliary cirrhosis causes significant morbidity and mortality in cystic fibrosis (CF). Although the mechanisms of pathogenesis remain unclear, bile acids have been proposed as potential mediators of liver injury. This study examined bile acid composition in CF and assessed altered bile acid profiles to determine if they are associated with incidence and progression of liver injury in CF-associated liver disease (CFLD). Bile acid composition was determined by gas-liquid chromatography/mass spectrometry in bile, urine, and serum samples from 30 children with CFLD, 15 children with CF but without liver disease (CFnoLD)), and 43 controls. Liver biopsies from 29 CFLD subjects were assessed histologically by grading for fibrosis stage, inflammation, and disruption of the limiting plate. A significantly greater proportion of endogenous biliary ursodeoxycholic acid (UDCA) was demonstrated in CFnoLD subjects vs. both CFLD subjects and controls (2.4- and 2.2-fold, respectively; ANOVA, P = .04), and a 3-4 fold elevation in endogenous serum UDCA concentration was observed in both CFLD subjects and CFnoLD subjects vs. controls (ANOVA, P < .05). In CFLD, there were significant correlations between serum cholic acid and hepatic fibrosis, inflammation, and limiting plate disruption as well as the ratio of serum cholic acid/chenodeoxycholic acid to hepatic fibrosis, inflammation, and limiting plate disruption. In conclusion, elevated endogenous UDCA in CFnoLD suggests a possible protective role against liver injury in these patients. The correlation between both cholic acid and cholic acid/chenodeoxycholic acid levels with histological liver injury and fibrosis progression suggests a potential monitoring role for these bile acids in CFLD.
Resumo:
The prevalence of fatty liver is rising in association with the global increase in obesity and type 2 diabetes. In the past, simple steatosis was regarded as benign, but the presence of another liver disease may provide a synergistic combination of steatosis, cellular adaptation, and oxidative damage that aggravates liver injury. In this review, a major focus is on the role of steatosis as a co-factor in chronic hepatitis C (HCV), where the mechanisms promoting fibrosis and the effect of weight reduction in minimizing liver injury have been most widely studied. Steatosis, obesity, and associated metabolic factors may also modulate the response to alcohol- and drug-induced liver disease and may be risk factors for the development of hepatocellular cancer. The pathogenesis of injury in obesity-related fatty liver disease involves a number of pathways, which are currently under investigation. Enhanced oxidative stress, increased susceptibility to apoptosis, and a dysregulated response to cellular injury have been implicated, and other components of the metabolic syndrome such as hyperinsulinernia and hyperglycemia are likely to have a role. Fibrosis also may be increased as a by-product of altered hepatocyte regeneration and activation of bipotential hepatic progenitor cells. In conclusion, active management of obesity and a reduction in steatosis may improve liver injury and decrease the progression of fibrosis.
Resumo:
Steatosis occurs in >50% of patients with chronic HCV. In patients with viral genotype 3, steatosis may be a cytopathic effect of the virus. However in many patients with HCV, the pathogenesis of steatosis appears to be the same as for patients with non-alcoholic fatty liver disease (NAFLD) ie related to increased body mass index (BMI). We studied the effect of a 12 week weight reduction program on metabolic parameters in subjects with chronic HCV genotype 1 (Group 1, n = 16), genotype 3 (Group 2, n = 13) and patients with NAFLD (Group 3, n = 13). A liver biopsy was performed prior to and 3-6 months after the intervention period in 15 patients. The mean (SD) BMI of subjects in groups 1, 2 and 3 was 30.7 (4.0), 29.0 (5.2) and 33.3 (7.7), respectively. There was no significant difference in the amount of weight loss, change in waist circumference, change in ALT or reduction in steatosis between the 3 groups. Mean (SD) weight loss was 5.1 (3.7) kg. In those patients who lost weight, serum insulin (mean (SD) mU/L) changed from 17.8 (7.8) to 11.5 (4.8) (p = 0.003), 12.4 (5.0) to 8.4 (4.3) (p = 0.02), and 16.9 (7.3) to 17.8 (8.1) (p = 0.76) in Groups 1, 2 and 3, respectively. A small amount of weight loss is associated with a reduction in circulating insulin levels in patients with chronic HCV, particularly in genotype 1. In patients with NAFLD, the lack of a significant decrease in circulating insulin with weight reduction may reflect the higher initial BMI or may be due to the pathogenesis of this disorder.
Resumo:
Background and Aims: Hepatic steatosis has been shown to be associated with lipid peroxidation and hepatic fibrosis in a variety of liver diseases including non-alcoholic fatty liver disease. However, the lobular distribution of lipid peroxidation associated with hepatic steatosis, and the influence of hepatic iron stores on this are unknown. The aim of this study was to assess the distribution of lipid peroxidation in association with these factors, and the relationship of this to the fibrogenic cascade. Methods: Liver biopsies from 39 patients with varying degrees of hepatic steatosis were assessed for evidence of lipid peroxidation (malondialdehyde adducts), hepatic iron, inflammation, fibrosis, hepatic ;stellate cell activation (alpha-smooth muscle actin and TGF-beta expression) and collagen type I synthesis (procollagen a 1 (I) mRNA). Results: Lipid peroxidation occurred in and adjacent to fat-laden hepatocytes and was maximal in acinar zone 3. Fibrosis was associated with steatosis (P < 0.04), lipid peroxidation (P < 0.05) and hepatic iron stores (P < 0.02). Multivariate logistic regression analysis confirmed the association between steatosis and lipid peroxidation within zone 3 hepatocytes (P < 0.05), while for hepatic iron, lipid peroxidation was seen within sinusoidal cells (P < 0.05), particularly in zone 1 (P < 0.02). Steatosis was also associated with acinar inflammation (P < 0.005). α-Smooth muscle actin expression was present in association with both lipid peroxidation and fibrosis. Although the effects of steatosis and iron on lipid peroxidation and fibrosis were additive, there was no evidence of a specific synergistic interaction between them. Conclusions: These observations support a model where steatosis exerts an effect on fibrosis through lipid peroxidation, particularly in zone 3 hepatocytes. (C) 2001 Blackwell Science Asia Pty Ltd.