17 resultados para Failure rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Exercise therapy improves functional capacity in CHF, but selection and individualization of training would be helped by a simple non-invasive marker of peak VO2. Peak VO2 in these pts is difficult to predict without direct measurement, and LV ejection fraction is a poor predictor. Myocardial tissue velocities are less load-dependent, and may be predictive of the exercise response in CHF pts. We sought to use tissue velocity as a predictor of peak VO2 in CHF pts. Methods. Resting 2D-echocardiography and tissue Doppler imaging were performed in 182 CHF pts (159 male, age 62±10 years) before and after metabolic exercise testing. The majority of these patients (129, 71%) had an ischemic cardiomyopathy, with resting EF of 35±13% and a peak VO2 of 13.5±4.7 ml/kg/min. Results. Neither resting EF (r=0.15) nor peak EF (r=0.18, both p=NS) were correlated with peak VO2. However, peak VO2 correlated with peak systolic velocity in septal (Vss, r=0.31) and lateral walls (Vsl, r=0.26, both p=0.01). In a general linear model (r2 = 0.25), peak VO2 was calculated from the following equation: 9.6 + 0.68*Vss - 0.09*age + 0.06*maximum HR. This model proved to be a superior predictor of peak VO2 (r=0.51, p=0.01) than the standard prediction equations of Wasserman (r= -0.12, p=0.01). Conclusions. Resting tissue Doppler, age and maximum heart rate may be used to predict functional capacity in CHF patients. This may be of use in selecting and following the response to therapy, including for exercise training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mantle convection models it has become common to make use of a modified (pressure sensitive, Boussinesq) von Mises yield criterion to limit the maximum stress the lithosphere can support. This approach allows the viscous, cool thermal boundary layer to deform in a relatively plate-like mode even in a fully Eulerian representation. In large-scale models with embedded continental crust where the mobile boundary layer represents the oceanic lithosphere, the von Mises yield criterion for the oceans ensures that the continents experience a realistic broad-scale stress regime. In detailed models of crustal deformation it is, however, more appropriate to choose a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on whichever one of many randomly oriented planes happens to be favorably oriented with respect to the stress field. As coupled crust/mantle models become more sophisticated it is important to be able to use whichever failure model is appropriate to a given part of the system. We have therefore developed a way to represent Mohr-Coulomb failure within a code which is suited to mantle convection problems coupled to large-scale crustal deformation. Our approach uses an orthotropic viscous rheology (a different viscosity for pure shear to that for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation - neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane which is formally equivalent in any symmetric formulation. It is also important to allow strain-weakening of the material. The material should remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-Integration-point finite element code and will show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion, and comparisons between mantle convection models using the von Mises versus the Mohr-Coulomb yield criteria. The formulation itself is general and applies to 2D and 3D problems, although it is somewhat more complicated to identify the slip plane in 3D.