67 resultados para FERROMAGNETIC SPIN CHAINS
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.
Resumo:
Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.
Resumo:
A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is solvable via the Bethe ansatz method for arbitrary values of the rung coupling J. This is achieved by a suitable mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase transition between gapped and gapless spin excitations occurs at the critical value J(c) = 1/2 of the rung coupling.
Resumo:
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2 \2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
Resumo:
We present a general prescription for the construction of integrable one-dimensional systems with closed boundary conditions and quantum supersymmetry.
Resumo:
We present two integrable spin ladder models which possess a general free parameter besides the rung coupling J. The models are exactly solvable by means of the Bethe ansatz method and we present the Bethe ansatz equations. We analyze the elementary excitations of the models which reveal the existence of a gap for both models that depends on the free parameter. (C) 2003 American Institute of Physics.
Resumo:
Within the ballistic transport picture, we have investigated the spin-polarized transport properties of a ferromagnetic metal/two-dimensional semiconductor (FM/SM) hybrid junction and an FM/FM/SM structure using quantum tunnelling theory. Our calculations indicate explicitly that the low spin injection efficiency (SIE) from an FM into an SM, compared with a ferromagnet/normal metal junction, originates from the mismatch of electron densities in the FM and SM. To enhance the SIE from an FM into an SM, we introduce another FM film between them to form FM/FM/SM double tunnel junctions, in which the quantum interference effect will lead to the current polarization exhibiting periodically oscillating behaviour, with a variation according to the thickness of the middle FM film and/or its exchange energy strength. Our results show that, for some suitable values of these parameters, the SIE can reach a very high level, which can also be affected by the electron density in the SM electrode.
Resumo:
Using the quantum tunneling theory, we investigate the spin-dependent transport properties of the ferromagnetic metal/Schottky barrier/semiconductor heterojunction under the influence of an external electric field. It is shown that increasing the electric field, similar to increasing the electron density in semiconductor, will result in a slight enhancement of spin injection in tunneling regime, and this enhancement is significantly weakened when the tunneling Schottky barrier becomes stronger. Temperature effect on spin injection is also discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We investigate the competition between magnetic depairing interactions, due to spin-exchange mechanism and∕or to spin-dependent asymmetric bandwidths, and pairing coupling in metallic grains. We present a detailed analysis of the quantum ground state in different regimes arising from the interplay between ferromagnetic and pairing correlations for different fillings. We find out that the occurrence of a ground state with coexisting spin-polarization and pairing correlations is enhanced when the asymmetric spin-dependent distribution of the single-particle energies is considered. The mechanisms leading to such a stable quantum state are finally clarified.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.
Resumo:
The quantitative description of the quantum entanglement between a qubit and its environment is considered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is calculated as a function of α, the strength of the ohmic coupling to the environment, and ɛ, the level asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo model. For ɛ=0, the entanglement increases monotonically with α, until it becomes maximal for α→1-. For fixed ɛ>0, the entanglement is a maximum as a function of α for a value, α=αM
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.