74 resultados para Explicit recasts
Resumo:
An exact analytical solution is obtained for the transient dissolution of solid spheres in a diffusion-controlled environment. This result provides a useful reference point for drug testing in humans. The dimensionless solution is expressed in terms of a single parameter, which accounts for solubility, bulk flow, and stagnant fluid composition. A simple, explicit and exact expression was found to predict time-to-complete dissolution (TCD). An approximate solution was also found which tracks the exact case for low solubility conditions.
Resumo:
We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
This article extends Defeasible Logic to deal with the contextual deliberation process of cognitive agents. First, we introduce meta-rules to reason with rules. Meta-rules are rules that have as a consequent rules for motivational components, such as obligations, intentions and desires. In other words, they include nested rules. Second, we introduce explicit preferences among rules. They deal with complex structures where nested rules can be involved.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
This review explores the influence to suicide in print and electronic media, and considers both real and fictional deaths. The conclusion appears inescapable that reports about celebrities which are multi-modal, repeated, explicit, front page, glorify the suicide, and describe the method lead to an increase in deaths from suicide, particularly in the region in which reports are published. The paper argues that even if there was multi-national agreement to international guidelines, media will continue to report suicide when it is considered to be a matter of public interest. What appears crucial is a collaborative approach between professionals and the media to promote a negative attitude toward suicide without increasing stigma toward those with mental health problems.
Resumo:
The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
Subcycling algorithms which employ multiple timesteps have been previously proposed for explicit direct integration of first- and second-order systems of equations arising in finite element analysis, as well as for integration using explicit/implicit partitions of a model. The author has recently extended this work to implicit/implicit multi-timestep partitions of both first- and second-order systems. In this paper, improved algorithms for multi-timestep implicit integration are introduced, that overcome some weaknesses of those proposed previously. In particular, in the second-order case, improved stability is obtained. Some of the energy conservation properties of the Newmark family of algorithms are shown to be preserved in the new multi-timestep extensions of the Newmark method. In the first-order case, the generalized trapezoidal rule is extended to multiple timesteps, in a simple way that permits an implicit/implicit partition. Explicit special cases of the present algorithms exist. These are compared to algorithms proposed previously. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
We use a spatially explicit population model to explore the population consequences of different habitat selection mechanisms on landscapes with fractal variation in habitat quality. We consider dispersal strategies ranging from random walks to perfect habitat selectors for two species of arboreal marsupial, the greater glider (Petauroides volans) and the mountain brushtail possum (Trichosurus caninus). In this model increasing habitat selection means individuals obtain higher quality territories, but experience increased mortality during dispersal. The net effect is that population sizes are smaller when individuals actively select habitat. We find positive relationships between habitat quality and population size can occur when individuals do not use information about the entire landscape when habitat quality is spatially autocorrelated. We also find that individual behaviour can mitigate the negative effects of spatial variation on population average survival and fecundity. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
We study some challenging presentations which arise as groups of deficiency zero. In four cases we settle finiteness: we show that two presentations are for finite groups while two are fur infinite groups. Thus we answer three explicit questions in the literature and we provide the first published deficiency zero presentation for a group with derived length seven. The tools we use are coset enumeration and Knuth-Bendix rewriting, which are well-established as methods for proving finiteness or otherwise of a finitely presented group. We briefly comment on their capabilities and compare their performance.
Resumo:
The graded-fermion algebra and quasispin formalism are introduced and applied to obtain the gl(m\n)down arrow osp(m\n) branching rules for the two- column tensor irreducible representations of gl(m\n), for the case m less than or equal to n(n > 2). In the case m < n, all such irreducible representations of gl(m\n) are shown to be completely reducible as representations of osp(m\n). This is also shown to be true for the case m=n, except for the spin-singlet representations, which contain an indecomposable representation of osp(m\n) with composition length 3. These branching rules are given in fully explicit form. (C) 1999 American Institute of Physics. [S0022-2488(99)04410-2].
Resumo:
Many harvested marine and terrestrial populations have segments of their range protected in areas free from exploitation. Reasons for areas being protected from harvesting include conservation, tourism, research, protection of breeding grounds, stock recovery, harvest regulation, or habitat that is uneconomical to exploit. In this paper we consider the problem of optimally exploiting a single species local population that is connected by dispersing larvae to an unharvested local population. We define a spatially-explicit population dynamics model and apply dynamic optimization techniques to determine policies for harvesting the exploited patch. We then consider how reservation affects yield and spawning stock abundance when compared to policies that have not recognised the spatial structure of the metapopulation. Comparisons of harvest strategies between an exploited metapopulation with and without a harvest refuge are also made. Results show that in a 2 local population metapopulation with unidirectional larval transfer, the optimal exploitation of the harvested population should be conducted as if it were independent of the reserved population. Numerical examples suggest that relative source populations should be exploited if the objective is to maximise spawning stock abundance within a harvested metapopulation that includes a protected local population. However, this strategy can markedly reduce yield over a sink harvested reserve system and may require strict regulation for conservation goals to be realised. If exchange rates are high, results indicate that spawning stock abundance can be less in a reserve system than in a fully exploited metapopulation. In order to maximise economic gain in the reserve system, results indicate that relative sink populations should be harvested. Depending on transfer levels, loss in harvest through reservation can be minimal, and is likely to be compensated by the potential environmental and economic benefits of the reserve.