70 resultados para Existence and structure of the pullback attractor
Resumo:
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.
Resumo:
Marked phenotypic variation has been reported in pyramidal cells in the primate cerebral cortex. These extent and systematic nature of these specializations suggest that they are important for specialized aspects of cortical processing. However, it remains unknown as to whether regional variations in the pyramidal cell phenotype are unique to primates or if they are widespread amongst mammalian species. In the present study we determined the receptive fields of neurons in striate and extrastriate visual cortex, and quantified pyramidal cell structure in these cortical regions, in the diurnal, large-brained, South American rodent Dasyprocta primnolopha. We found evidence for a first, second and third visual area (V1, V2 and V3, respectively) forming a lateral progression from the occipital pole to the temporal pole. Pyramidal cell structure became increasingly more complex through these areas, suggesting that regional specialization in pyramidal cell phenotype is not restricted to primates. However, cells in V1, V2 and V3 of the agouti were considerably more spinous than their counterparts in primates, suggesting different evolutionary and developmental influences may act on cortical microcircuitry in rodents and primates. (c) 2006 Elsevier B.V. All rights reserved.
Structure and dynamics of the Shapley Supercluster - Velocity catalogue, general morphology and mass
Resumo:
We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v approximate to 14 500 km s(-1)) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 x 75 h(-1) Mpc). There is also a connecting structure associated with the slightly nearer Abell 3571 cluster complex (v approximate to 12 000 km s(-1)). These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km s(-1) < cz < 18 000 km s(-1)), we found redshift-space overdensities with b(j) < 17.5 of similar or equal to 5.4 over the 225 square degree central region and similar or equal to 3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.
Resumo:
This study provides comprehensive documentation of silk production in the pest moth Helicoverpa armigera from gland secretion to extrusion of silk thread. The structure of the silk glands, accessory structures and extrusion apparatus are reported. The general schema of the paired silk glands follows that found for Lepidoptera. Morphology of the duct, silk press, muscle attachments and spigot are presented as a three-dimensional reconstruction and the cuticular crescent-shaped profile of the silk press is demonstrated in both open and closed forms with attendant muscle blocks, allowing advances in our knowledge of how the silk press functions to regulate the extrusion of silk. Growth of the spigot across instars is documented showing a distinctive developmental pattern for this extrusion device. Its shape and structure are related to use and load-bearing activity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Sulfate is an essential ion required for numerous functions in mammalian physiology. Due to its hydrophilic nature, cells require sulfate transporters on their plasma membranes to allow entry of sulfate into cells. In this study, we identified a new mouse Na+-sulfate cotransporter (mNaS2), characterized its tissue distribution and determined its cDNA and gene (Slc13a4) structures. mNaS2 mRNA was expressed in placenta, brain, lung, eye, heart, testis, thymus and liver. The mouse NaS2 cDNA spans 3384 nucleotides and its open frame encodes a protein of 624 amino acids. Slc13a4 maps to mouse chromosome 6131 and contains 16 exons, spanning over 40 kb in length. Its 5'-flanking region contains CART- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, MTF-1, STAT6 and HNF4 consensus sequences. This is the first study to define the tissue distribution of mNaS2 and resolve its cDNA and gene structures, which will allow us to investigate mNaS2 gene expression in vivo and determine its role in mammalian physiology.
Resumo:
Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.
Resumo:
The tetrachlorocuprate(II) ion can crystallize in two different structures with the piperazinium dication (pipzH(2)). Both structures contain discrete CuCl42- species. A yellow compound (pipzH(2))[CuCl4]. 2H(2)O (1) is monoclinic (C2/c, Z = 4, a = 10.538(3) Angstrom, b = 7.4312(5) Angstrom, c = 17.281(4) Angstrom, beta = 111.900(10)degrees) and contains the CuCl42- ion as a distorted tetrahedron. A green compound (pipzH(2))(2)[CuCl4]. Cl-2. 3H(2)O (2) is triclinic (P (1) over bar, Z = 2, a = 9.264(3) Angstrom, b = 10.447(2) Angstrom, c = 11.366(2) Angstrom, alpha = 68.38 degrees, beta = 82.86(2)degrees, gamma = 83.05(2)degrees) and contains the CuCl42- ion with a square planar geometry. This latter compound shows thermo/photochromism, changing from green to yellow upon heating or laser irradiation.
Resumo:
Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional H-1/N-15 NMR spectroscopy, and we use H-1/N-15 spin relation measurements to investigate its backbone dynamics. The structure consists of two distorted beta-hairpins and a single alpha-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C-4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NE Notably, this face is well removed from the putative DNA-binding face of the NE an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions.
Resumo:
The potentially sexidentate polyamine macrocycle 15-methyl-1,4,7,10,13-pentaazacyclohexadecan-15-amine (1) was prepared via a copper(II)-templated route from 3,6,9-triazaundecan-1,ll-diamine, formaldehyde and nitroethane which first formed the copper(II) complex of the macrocycle 15-methyl-15-nitro-1,4,7,10,13-pentaazacyclohexadecane (2), reduced subsequently with zinc and aqueous acid to yield 1. The hexaamine 1, with five secondary amine groups in the macrocyclic ring and one pendant primary amine group, forms inert sexidentate octahedral complexes with cobalt(III), chromium(III) and iron(III). An X-ray structure of [Co(1)](ClO4)(3) defines the distorted octahedron of the complex cation and shows it is a symmetrical isomer with all nitrogens bound and the central aza group trans to the pendant primary amine group. The [M(1)](3+) ions are all stable indefinitely in aqueous solution and exhibit spectra consistent with MN6 d(3) (Cr), low-spin d(5) (Fe) and low-spin d(6) (Co) electronic ground states. For each complex, a reversible M(III/II) redox couple is observed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.
Resumo:
The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.