70 resultados para Eutectic Solidification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strontium is the most widely used and a very effective element for modifying the morphology of eutectic silicon, while Ti and B are commonly present in the commercial grain refiners used for Al-Si alloys. Systematic studies on the effects of combined additions of Sr and different AlTiB grain refiners on the Al + Si eutectic and primary aluminium solidification have been performed. While slight coarsening of both eutectic Si and primary aluminium grains occurs during holding, no obvious interactions are observed between Sr and AlTiB grain refiners when the addition level of grain refiners is low. As a result, a well-modified and grain refined structure was obtained. However, strong negative interactions between Sr and Al1.5Ti1.5B3 were observed as the addition level of the grain refiner increases. It was found that these interactions have a much more profound impact on the eutectic solidification than the primary Al solidification. The melt treated with combined additions of Sr and Al1.5Ti1.5B still shows good grain refinement efficiency even after losing its modification completely. The mechanism responsible for such negative interactions is further discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of intra- and inter-phase distribution of modifying elements in aluminium-silicon alloys is difficult due to the low concentrations used. This research utilises a mu-XRF (X-ray fluorescence) technique at the SPring-8 synchrotron radiation facility X-ray source and reveals that the modifying element strontium segregates exclusively to the eutectic silicon phase and the distribution of strontium within this phase is relatively homogeneous. This has important implications for the fundamental mechanisms of eutectic modification in hypoeutectic aluminium-silicon alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of boron and strontium interactions on the eutectic silicon in hypoeutectic Al-Si alloys have been studied. Samples were prepared from an AI-I 0 mass%Si base alloy with different Al-B additions, alone and in combination with strontium. In alloys containing no strontium, boron additions do not cause modification of the eutectic silicon, while in strontium containing alloys, boron additions reduce the level of modification of the eutectic silicon. Thermal analysis parameters and eutectic silicon microstructures were investigated with respect to the Sr to B ratio. In order to modify the eutectic silicon, a Sr/B ratio exceeding 0.4 is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of boron on the eutectic modification and solidification mode of hypoeutectic Al-Si alloys have been studied adding different boride phases. The results show that boron does not cause modification of the eutectic silicon. Boron-containing samples display eutectic nucleation and growth characteristics similar to that of unmodified alloys. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strain dependence of particle cracking in aluminum alloys A356/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing and modification state. Large and elongated eutectic silicon particles in the unmodified alloys and large pi-phase (Al9FeMg3Si5) particles in alloy A357 show the greatest tendency to cracking. In alloy A356, cracking of eutectic silicon particles dominates the accumulation of damage while cracking of Fe-rich particles is relatively unimportant. However, in alloy A357, especially with Sr modification, cracking of the large pi-phase intermetallics accounts for the majority of damage at low and intermediate strains but becomes comparable with silicon particle cracking at large strains. Fracture occurs when the volume fraction of cracked particles (eutectic silicon and Fe-rich intermetallics combined) approximates 45 pct of the total particle volume fraction or when the number fraction of cracked particles is about 20 pct. The results are discussed in terms of Weibull statistics and existing models for dispersion hardening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additions of strontium to hypoeutectic aluminum-silicon alloys modify the morphology of the eutectic silicon phase from a coarse platelike structure to a fine fibrous structure. Thermal analysis, interrupted solidification, and microstructural examination of sand castings in this work revealed that, in addition to a change in silicon morphology, modification with strontium also causes an increase in the size of eutectic grains. The eutectic grain size increases because fewer grains nucleate, possibly due to poisoning of the phosphorus-based nucleants, that are active in the unmodified alloy. A simple growth model is developed to estimate the interface velocity during solidification of a eutectic grain. The model confirms, independent of microstructural observations, that the addition of 100 ppm strontium increases the eutectic grain size by at least an order of magnitude compared with the equivalent unmodified alloy. The model predicts that the growth velocity varies significantly during eutectic growth. At low strontium levels, these variations may be sufficient to cause transitions between flake and fibrous silicon morphologies depending on the casting conditions. The model can be used to rationally interpret the eutectic grain structure and silicon morphology of fully solidified aluminum-silicon castings and, when coupled with reliable thermal data, can be used to estimate the eutectic grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new modification phenomenon is reported for Al-Si alloys, where the Al-Si eutectic is refined by segregated TiB2 particles. The TiB2 particles are pushed to the Al-Si phase boundary during solidification of the eutectic and it is believed that at high concentrations the TiB2 particles restrict solute redistribution causing refinement of the Si. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sand-cast plates were used to determine the effect of iron and manganese concentrations on porosity levels in Al-9 pet Si-0.5 pet Mg alloys. Iron increased porosity levels. Manganese additions increased porosity levels in alloys with 0.1 pet Fe, but reduced porosity in alloys with 0.6 and I pet Fe. Thermal analysis and quenching were undertaken to determine the effect of iron and manganese on the solidification of the Al-Si eutectic. At high iron levels, the presence of large beta-Al5FeSi was found to reduce the number of eutectic nucleation events and increase the eutectic grain size. The preferential formation of alpha-Al15Mn3Si2 upon addition of manganese reversed these effects. It is proposed that this interaction is due to beta-Al5FeSi and the Al-Si eutectic having common nuclei. Porosity levels are proposed to be controlled by the eutectic grain size and the size of the iron-bearing intermetallic particles rather than the specific intermetallic phase that forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally accepted that growth of eutectic silicon in aluminium-silicon alloys occurs by a twin plane re-entrant edge (TPRE) mechanism. It has been proposed that modification of eutectic silicon by trace additions occurs due to a massive increase in the twin density caused by atomic effects at the growth interface. In this study, eutectic microstructures and silicon twin densities in samples modified by elemental additions of barium (Ba), calcium (Ca), yttrium (Y) and ytterbium (Yb) (elements chosen due to a near-ideal atomic radii for twinning) in an A356.0 alloy have been determined by optical microscopy, thermal analysis, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Addition of barium or calcium caused the silicon structure to transform to a fine fibrous morphology, while the addition of yttrium or ytterbium resulted in a refined plate-like eutectic structure. Twin densities in all modified samples are higher than in unmodified alloys, and there are no significant differences between fine fibrous modification (by Ba and Ca) and refined plate-like modification (by Y and Yb). The twin density in all modified samples is less than expected based on the predictions by the impurity induced twining model. Based on these results it is difficult to explain the modification with Ba, Ca, Y and Yb by altered twin densities alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of the mechanical properties of 20 experimental alloys has been carried out. The effect of different contents of Si, Cu, Mg, Fe and Mn, as well as solidification rate, has been assessed using a strength-ductility chart and a quality index-strength chart developed for the alloys. The charts show that the strength generally increases and the ductility decreases with an increasing content of Cu and Mg. Increased Fe (at Fe/Mn ratio 0.5) dramatically lowers the ductility and strength of low Si alloys. Increased Si content generally increases the strength and the ductility. The increase in ductility with increased Si is particularly significant when the Fe content is high. The charts are used to show that the cracking of second phase particles imposes a limit to the maximum achievable strength by limiting the ductility of strong alloys. The (Cu + Mg) content (at.%), which determines the precipitation strengthening and the volume fraction of Cu-rich and Mg-rich intermetallics, can be used to select the alloys for given strength and ductility, provided the Fe content stays below the Si-dependent critical level for the formation of pre-eutectic alpha-phase particles or beta-phase plates.