50 resultados para Engineering, Mechanical|Engineering, Robotics
Resumo:
For centuries, hydraulic engineers were at the forefront of science. The last forty years marked a change of perception in our society with a focus on environmental sustainability and management, particularly in developed countries. Herein, the writer illustrates his strong belief that the future of hydraulic engineering lies upon a combination of innovative engineering, research excellence and higher education of quality. This drive continues a long tradition established by eminent scholars like Arthur Thomas IPPEN, John Fisher KENNEDY and Hunter ROUSE.
Resumo:
A sophisticated style of mentoring has been found to be essential to support engineering student teams undertaking technically demanding, real-world problems as part of a Project-Centred Curriculum (PCC) at The University of Queensland. The term ‘triple-objective’ mentoring was coined to define mentoring that addresses not only the student’s technical goal achievement but also their time and team management. This is achieved through a number of formal mentor meetings that are informed by a confidential instrument which requires students to individually reflect on team processes prior to the meeting, and a checklist of technical requirements against which the interim student team progress and achievements are assessed. Triple-objective mentoring requires significant time input and coordination by the academic but has been shown to ensure effective student team work and learning undiminished by team dysfunction. Student feedback shows they value the process and agree that the tools developed to support the process are effective in developing and assessing team work and skills with average scores mostly above 3 on a four point scale.
Resumo:
Ex vivo hematopoiesis is increasingly used for clinical applications. Models of ex vivo hematopoiesis are required to better understand the complex dynamics and to optimize hematopoietic culture processes. A general mathematical modeling framework is developed which uses traditional chemical engineering metaphors to describe the complex hematopoietic dynamics. Tanks and tubular reactors are used to describe the (pseudo-) stochastic and deterministic elements of hematopoiesis, respectively. Cells at any point in the differentiation process can belong to either an immobilized, inert phase (quiescent cells) or a mobile, active phase (cycling cells). The model describes five processes: (1) flow (differentiation), (2) autocatalytic formation (growth),(3) degradation (death), (4) phase transition from immobilized to mobile phase (quiescent to cycling transition), and (5) phase transition from mobile to immobilized phase (cycling to quiescent transition). The modeling framework is illustrated with an example concerning the effect of TGF-beta 1 on erythropoiesis. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Hypoeutectic AI-Si alloys represent the most widely used alloy system for cast aluminium applications. This system has a unique behaviour with respect to grain formation where an increase in silicon content results in a transition to larger grain sizes after a minimum at an intermediate concentration. As a result of the already large solute content, grain refinement by solute additions is inefficient and nucleant particles from the common aluminium grain refiners are not as effective as in wrought alloys. However, casting conditions, such as a low pouring temperature, that promote the formation of wall crystals tie. crystals nucleated in the thermally undercooled layer at or next to mould walls) are very effective in yielding a small grain size. This paper presents results of an investigation of the effect of low superheat and mould preheat temperature on grain size. It was found that pouring temperature controls the effectiveness of the wall mechanism while mould preheat has little effect until high preheat temperatures at which a large increase in grain size occurs. The observed changes in grain size are explained in terms of the balance between nucleation rate and survival rate of crystal nuclei resulting from changes in superheat and mould temperature.
Resumo:
Cell-wall mechanical properties play an integral part in the growth and form of Saccharomyces cerevisiae, In contrast to the tremendous knowledge on the genetics of S. cerevisiae, almost nothing is known about its mechanical properties. We have developed a micromanipulation technique to measure the force required to burst single cells and have recently established a mathematical model to extract the mechanical properties of the cell wall from such data, Here we determine the average surface modulus of the S, cerevisiae cell wall to be 11.1 +/- 0.6 N/m and 12.9 +/- 0.7 N/m in exponential and stationary phases, respectively, giving corresponding Young's moduli of 112 +/- 6 MPa and 107 +/- 6 MPa, This result demonstrates that yeast cell populations strengthen as they enter stationary phase by increasing wall thickness and hence the surface modulus, without altering the average elastic properties of the cell-wall material. We also determined the average breaking strain of the cell wall to be 82% +/- 3% in exponential phase and 80% +/- 3% in stationary phase, This finding provides a failure criterion that can be used to predict when applied stresses (e,g,, because of fluid flow) will lead to wall rupture, This work analyzes yeast compression experiments in different growth phases by using engineering methodology.
Resumo:
This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.
Resumo:
The synthesis of chromium carbides, Cr7C3 and Cr3C2, by mechanically allowing chromium and carbon powders has been investigated. Milling conditions were found to have a strong influence on the evolution of microstructure, with high collision energies being required to form carbide phases. Milling at intermediate energy levels resulted in the formation of an amorphous phase, and with low energy conditions only grain size refinement of Cr occurred with no evidence of any reaction between Cr and C. The amorphous phase was found to be the precursor to carbide formation. (C) 1997 Elsevier Science S.A.