34 resultados para Electronic instrumentation
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
A series of novel macrocyclic tetraaza ligands that incorporate a naphthalene moiety as a photoactive chromophore have been prepared and structurally characterized as their Cu(II) complexes. Variable-temperature photophysical studies have concluded that the luminescence quenching evident in the Cu(H) complexes is due to intramolecular electronic energy transfer (EET). In their free-base forms, these ligands undergo reductive luminescence quenching via photoinduced electron transfer (PET) reactions, with proximate amine lone pairs acting as electron donors. Consequently, the emission behavior can be modulated by variations in pH and/or the presence of other Lewis acids such as Zn(H).
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Ellipsoidal harmonics are presented as a basis function set for the design of shim coils for magnetic resonance imaging (MRI) or spectroscopy. MR shim coils may be either superconductive or resistive. Ellipsoidal harmonics form an orthogonal set over an ellipsoid and hence are appropriate in circumstances where the imaging or spectroscopic region of a magnet more closely conforms to an ellipsoid rather than a sphere. This is often the case in practice. The Cartesian form of ellipsoidal harmonics is discussed. A method for the design of streamline coil designs is detailed and patterns for third-order ellipsoidal (Lame) shims wound on a cylindrical surface are presented.
Resumo:
Efficient intramolecular electronic energy transfer (EET) has been demonstrated for three novel bichromophoric compounds utilizing a macrocyclic spacer as the bridge between the electronic energy donor and acceptor fragments. As their free base forms, emission from the electronically excited donor is absent and the acceptor emission is reductively quenched via photoinduced oxidation of proximate amine lone pairs. As their Zn(II) complexes, excitation of the donor results in sensitization of the electronic acceptor emission.
An electronic lifeline: Information and communication technologies in a teacher education internship
Resumo:
Laser heating Ar-40/Ar-39 geochronology provides high analytical precision and accuracy, mum-scale spatial resolution. and statistically significant data sets for the study of geological and planetary processes, A newly commissioned Ar-40/Ar-39 laboratory at CPGeo/USP, Sao Paulo, Brazil, equips the Brazilian scientific community with a new powerful tool applicable to the study of geological and cosmochemical processes. Detailed information about laboratory layout, environmental conditions, and instrumentation provides the necessary parameters for the evaluation of the CPGeo/USp Ar-40/Ar-39 suitability to a diverse range of applications. Details about analytical procedures, including mineral separation, irradiation at the IPEN/CNEN reactor at USP, and mass spectrometric analysis enable potential researchers to design the necessary sampling and sample preparation program suitable to the objectives of their study. Finally, the results of calibration tests using Ca and K salts and glasses, international mineral standards, and in-house mineral standards show that the accuracy and precision obtained at the Ar-40/Ar-39 laboratory at CPGeo/USP are comparable to results obtained in the most respected laboratories internationally. The extensive calibration and standardization procedures under-taken ensure that the results of analytical studies carried out in our laboratories will gain immediate international credibility, enabling Brazilian students and scientists to conduct forefront research in earth and planetary sciences.