45 resultados para Einstein-podolsky-rosen Paradox
Resumo:
Recent progress in fabrication and control of single quantum systems presage a nascent technology based on quantum principles. We review these principles in the context of specific examples including: quantum dots, quantum electromechanical systems, quantum communication and quantum computation.
Resumo:
We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior of the specific heat.
Resumo:
We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates-a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.
Resumo:
The first terrestrial Pb-isotope paradox refers to the fact that on average, rocks from the Earth's surface (i.e. the accessible Earth) plot significantly to the right of the meteorite isochron in a common Pb-isotope diagram. The Earth as a whole, however, should plot close to the meteorite isochron, implying the existence of at least one terrestrial reservoir that plots to the left of the meteorite isochron. The core and the lower continental crust are the two candidates that have been widely discussed in the past. Here we propose that subducted oceanic crust and associated continental sediment stored as garnetite slabs in the mantle Transition Zone or mid-lower mantle are an additional potential reservoir that requires consideration. We present evidence from the literature that indicates that neither the core nor the lower crust contains sufficient unradiogenic Pb to balance the accessible Earth. Of all mantle magmas, only rare alkaline melts plot significantly to the left of the meteorite isochron. We interpret these melts to be derived from the missing mantle reservoir that plots to the left of the meteorite isochron but, significantly, above the mid-ocean ridge basalt (MORB)-source mantle evolution line. Our solution to the paradox predicts the bulk silicate Earth to be more radiogenic in Pb-207/Pb-204 than present-day MORB-source mantle, which opens the possibility that undegassed primitive mantle might be the source of certain ocean island basalts (OIB). Further implications for mantle dynamics and oceanic magmatism are discussed based on a previously justified proposal that lamproites and associated rocks could derive from the Transition Zone.
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
Delayering and the flattening of organizational hierarchies was a widespread trend through the 1990s. Peters (1992) in the USA promoted flattening as an organizational strategy and Keuning and Opheij (1994) promoted the prescriptions in Europe. Despite these strategies and apparent structural changes, the number and ratio of managers appears to have grown. This paradox of managerial downsizing has not been adequately probed in the literature. The predominant explanation, that there has been a 'myth of managerial downsizing', is associated with Gordon (1996). However, this debate has been shaped by the US experience and data. There is a need to reassess the dynamics of the 1990s in relation to other economies. This article focuses on a semi-peripheral economy, that of Australia. A study of the population of firms over time is necessary in order to resolve the issues. The article utilizes a comprehensive range of data, including several national surveys and a longitudinal database of all larger private-sector firms in Australia during the 1990s. The results indicate that the 'myth of managerial downsizing' must be rejected. There were dramatic effects on managers through the course of the 1990s in larger Australian firms. The dynamics of the process are analysed, tracking 4,153 firms across the decade and the paradox explained. The theoretical implications are discussed.
Resumo:
Resource-based views of the firm and in particular Kay's (Why Firms Succeed. Oxford: Oxford Univ. Press, 1995) model of sustainable competitive advantage have been used to advance an understanding of differences in the competitive advantage of private-sector firms. We extend the analysis to a public-sector firm where its major purpose includes engaging in public good by giving away its knowledge base and services. The case highlights the paradox that many public-sector organizations face in simultaneously pursuing public good and sustainable competitive advantage. While Kay's model is applicable for understanding intergovernmental agency competition, we find it necessary to incorporate resource dependency theory to address the paradox. Implications for theory and practice are provided. (C) 2002 Elsevier Inc. All rights reseved.
Resumo:
Single male sexually selected traits have been found to exhibit substantial genetic variance, even though natural and sexual selection are predicted to deplete genetic variance in these traits. We tested whether genetic variance in multiple male display traits of Drosophila serrata was maintained under field conditions. A breeding design involving 300 field-reared males and their laboratory-reared offspring allowed the estimation of the genetic variance-covariance matrix for six male cuticular hydrocarbons (CHCs) under field conditions. Despite individual CHCs displaying substantial genetic variance under field conditions, the vast majority of genetic variance in CHCs was not closely associated with the direction of sexual selection measured on field phenotypes. Relative concentrations of three CHCs correlated positively with body size in the field, but not under laboratory conditions, suggesting condition-dependent expression of CHCs under field conditions. Therefore condition dependence may not maintain genetic variance in preferred combinations of male CHCs under field conditions, suggesting that the large mutational target supplied by the evolution of condition dependence may not provide a solution to the lek paradox in this species. Sustained sexual selection may be adequate to deplete genetic variance in the direction of selection, perhaps as a consequence of the low rate of favorable mutations expected in multiple trait systems.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.
Resumo:
By stochastic modeling of the process of Raman photoassociation of Bose-Einstein condensates, we show that, the farther the initial quantum state is from a coherent state, the farther the one-dimensional predictions are from those of the commonly used zero-dimensional approach. We compare the dynamics of condensates, initially in different quantum states, finding that, even when the quantum prediction for an initial coherent state is relatively close to the Gross-Pitaevskii prediction, an initial Fock state gives qualitatively different predictions. We also show that this difference is not present in a single-mode type of model, but that the quantum statistics assume a more important role as the dimensionality of the model is increased. This contrasting behavior in different dimensions, well known with critical phenomena in statistical mechanics, makes itself plainly visible here in a mesoscopic system and is a strong demonstration of the need to consider physically realistic models of interacting condensates.
Resumo:
We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.
Resumo:
This article examines the neo-liberal reforms that the Kim government implemented in post-crisis Korea. It argues that by embracing the reforms, the state, paradoxicaliy, re-legitimised itself in the national political economy. The process of enacting the reforms completed the power shift from a collusive state-chaebol alliance towards a new alliance based on a more populist social contract - but one that nonetheless generally conformed to the tenets of neo-liberalism. Kim and his closest associates identified the malpractices of the chaebols as the main cause of the crisis, so reforming the chaebols would be the key to economic recovery. Combining populism and neo-liberalism, they drew on support from both domestic and international sources to rein in, rather than nurture, the chaebols.
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.