58 resultados para Echocardiography, Doppler, Color


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Echocardiographic analysis of regional left ventricular function is based upon the assessment of radial motion. Long-axis motion is an important contributor to overall function. but has been difficult to evaluate clinically until the recent development of tissue Doppler techniques. We sought to compare the standard visual assessment of radial motion with quantitative tissue Doppler measurement of peak systolic velocity. timing and strain rate (SRI) in 104 patients with known or suspected coronary artery disease undergoing dobutamine stress echocardiography (DbE). A standard DbE protocol was used with colour tissue Doppler images acquired in digital cine-loop format. peak systolic velocity (PSV), time to peak velocity (TPV) and SRI were assessed off-line by an independent operator. Wall motion was assessed by an experienced reader. Mean PSV, TPV and SRI values were compared with wall motion and the presence of coronary artery disease by angiography. A further analysis included assessing the extent of jeopardized myocardium by comparing average values of PSV, TPV and SRI against the previously validated angiographic score. Segments identified as having normal and abnormal radial wall motion showed significant differences in mean PSV (7.9 +/- 3.8 and 5.9 +/- 3.3 cm/s respectively; P < 0.001), TPV (84 40 and 95 +/- 48 ms respectively; P = 0.005) and SRI (- 1.45 +/- 0.5 and - 1.1 +/- 0.9 s(-1) respectively; P < 0.001). The presence of a stenosed subtending coronary artery was also associated with significant differences from normally perfused segments for mean PSV (8.1 3.4 compared with 5.7 +/- 3.7 cm/s; P < 0.001), TPV (78 50 compared with 92 +/- 45 ms; P < 0.001) and SRI (- 1.35 0.5 compared with - 1.20 +/- 0.4 s(-1); P = 0.05). PSV, TPV and SRI also varied significantly according to the extent of jeopardized myocardium within a vascular territory. These results suggest that peak systolic velocity, timing of contraction and SRI reflect the underlying physiological characteristics of the regional myocardium during DbE, and may potentially allow objective analysis of wall motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Tissue Doppler may be used to quantify regional left ventricular function but is limited by segmental variation of longitudinal velocity from base to apex and free to septal walls. We sought to overcome this by developing a composite of longitudinal and radial velocities. Methods and Results. We examined 82 unselected patients undergoing a standard dobutamine echocardiogram. Longitudinal velocity was obtained in the basal and mid segments of each wall using tissue Doppler in the apical views. Radial velocities were derived in the same segments using an automated border detection system and centerline method with regional chords grouped according to segment location and temporally averaged. In 25 patients at low probability of coronary disease, the pattern of regional variation in longitudinal velocity (higher in the septum) was the opposite of radial velocity (higher in the free wall) and the combination was homogenous. In 57 patients undergoing angiography, velocity in abnormal segments was less than normal segments using longitudinal (6.0 +/- 3.6 vs 9.0 +/- 2.2 cm/s, P = .01) and radial velocity (6.0 +/- 4.0 vs 8.0 +/- 3.9 cm/s, P = .02). However, the composite velocity permitted better separation of abnormal and normal segments (13.3 +/- 5.6 vs 17.5 +/- 4.2 cm/s, P = .001). There was no significant difference between the accuracy of this quantitative approach and expert visual wall motion analysis (81% vs 84%, P = .56). Conclusion: Regional variation of uni-dimensional myocardial velocities necessitates site-specific normal ranges, probably because of different fiber directions. Combined analysis of longitudinal and radial velocities allows the derivation of a composite velocity, which is homogenous in all segments and may allow better separation of normal and abnormal myocardium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal left ventricular (IV) filling may occur with increasing age despite apparently normal IV size and function, and is usually attributed to IV hypertrophy and coronary artery disease. The purpose of this study was to determine whether myocardial abnormalities could be identified in 67 such patients (36 men, mean age 57 +/- 9 years) whose IV hypertrophy and coronary artery disease were excluded by dobutamine echocardiography. All patients underwent gray scale and color tissue Doppler imaging from 3 apical views, which were stored and analyzed off line. Disturbances in structure and function were assessed by averaging the cyclic variation of integrated backscatter, strain rate, and peak systolic strain from each myocardial segment. Calibrated integrated backscatter (corrected for pericardial backscatter intensity) was measured in the septum and posterior wall from the parasternal long-axis view. Abnormal IV filling was present in 36 subjects (54%). Subjects with and without abnormal IV filling had similar IV mass, but differed in age (p <0.01), cyclic variation (p = 0.001), strain rate (p <0.01), and peak systolic strain (p <0.001). Multivariate logistic regression analysis demonstrated that age (p = 0.016) and cyclic variation (p = 0.042) were the most important determinants of abnormal IV filling in these apparently normal subjects. (C) 2003 by Excerpta Medica, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Regional left ventricular (LV) dysfunction may occur in patients with coronary artery disease (CAD) in the absence of infarction, but the causes of this phenomenon are unclear. We sought to identify whether changes in regional LV function were related to stenosis severity, using sensitive new ultrasound markers of function. Methods: We studied 67 individuals with no history of infarction and with normal LV systolic function: 49 patients with CAD and 18 control subjects without CAD. All patients underwent color Doppler tissue imaging, integrated backscatter (IB), anatomic M-mode echocardiography, and strain rate imaging to detect changes in structure and function. Peak early and late diastolic myocardial velocity, cyclic variation of IB, wall thickness, and percent wall thickening were measured in each basal and mid segment. Strain rate and peak systolic strain were calculated in each wall. CAD was defined as greater than or equal to 50% diameter stenosis. Normokinetic segments (n = 354) subtended by CAD were divided according to stenosis severity into 3 groups: group 1 (subtended by 50%-69% stenosis); group 2 (subtended by 70%-98% stenosis); and group 3 (subtended by greater than or equal to99% stenosis). Each parameter in each group was compared with that in 216 segments from control subjects. Results: Segments subtended by significant CAD showed lower peak early and late diastolic myocardial velocity compared with control segments. Group 3 showed significantly lower myocardial velocities than group 2 for both peak early (4.8 +/- 1.8 vs 6.0 +/- 2.0 cm/s, P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-type natriuretic peptide (BNP) levels increase in systolic heart failure (HF). However, the value of BNP in hypertensive patients with suspected diastolic HF (symptoms suggestive of HF but normal ejection fraction) and its relation to myocardial function in these patients is unclear. We prospectively studied 72 ambulatory hypertensive subjects (40 women, mean age 58 +/- 8 years) with exertional dyspnea and ejection fraction greater than or equal to50%. Diastolic function was evaluated with transmitral and pulmonary venous Doppler, mitral annular velocities (pulsed-wave tissue Doppler), and flow propagation velocity (color M-mode). Systolic function was assessed with strain and strain rate derived from color tissue Doppler imaging. BNP was related to myocardial function and the presence or absence of global diastolic dysfunction. By conventional Doppler criteria, 34 patients had normal left ventricular diastolic function and 38 had isolated diastolic dysfunction. BNP values were higher in patients with diastolic dysfunction (46 +/- 48 vs 20 +/- 20 pg/ml, p = 0.004) and were related independently to blood pressure, systolic strain rate, left atrial function (p < 0.01 for all), and age (p = 0.015). Patients with diastolic dysfunction and pseudonormal filling had higher BNP levels compared with impaired relaxation (89 +/- 47 vs 35 +/- 42 pg/ml, p = 0.001). However, 79% of patients with diastolic dysfunction had BNP levels within the normal range. We conclude that in ambulatory hypertensive patients with symptoms suggestive of mild HF and normal ejection fraction, BNP is related to atrial and ventricular systolic parameters, blood pressure, and age. Although elevated in the presence of diastolic dysfunction, the BNP level mostly is in the normal range and, therefore, has limited diagnostic value in stable patients with suspected diastolic HF. (C) 2003 by Excerpta Medica, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We sought to improve the feasibility of strain rate imaging (SRI) during dobutamine stress echocardiography (DSE) in 56 subjects at low risk of coronary disease. The impact of several SRI changes during acquisition were studied, including: (1) changing from fundamental to harmonic imaging; (2) parallel beam-forming; (3) alteration of spatial resolution and (4) narrow sector acquisition. We assessed SR signal quality, a quantitative measure of signal noise and measurements of SRI. Of 1462 segments evaluated, 6% were uninterpretable at rest and 8% at peak stress. Signal quality was optimised by increasing temporal (p = 0.01) and spatial resolution (p<0.0001 vs. baseline imaging) at rest and peak. Increasing spatial resolution also minimised signal noise (p<0.0001). Inter-observer variability of time to peak SR and peak SR were less with high temporal and spatial resolution. SRI quality can be improved with harmonic imaging and higher temporal resolution but optimisation of spatial resolution is critical. (C) 2004 World Federation for Ultrasound in Medicine Biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Postsystolic thickening (PST) of ischemic myocardial segments has been reported to account for the characteristic heterogeneity or regional asynchrony of myocardial wall motion during acute ischemia. Hypothesis: Postsystolic thickening detected by Doppler myocardial imaging (DMI) could be a useful clinical index of myocardial viability or peri-infarction viability in patients with myocardial infarction (MI). Methods: Doppler myocardial imaging was recorded at each stage of a standard dobutamine stress echocardiogram (DSE) in 20 patients (16 male, 60 +/- 13 years) with an NIT in the territory of the left anterior descending artery. Myocardial velocity data were measured in the interventricular septum and apical inferior segment of the MI territory. Postsystolic thickening was identified if the absolute velocity of PST was higher than peak systolic velocity in the presence of either a resting PST > 2.0 cm/s or if PST doubled at low-dose dobutamine infusion. Results: Doppler myocardial imaging data could be analyzed in 38 ischemic segments (95%), and PST was observed in 21 segments (55%), including 3 segments showing PST only at low-dose dobutamine infusion. There was no significant difference of baseline wall motion score index (2.1 +/- 0.3 vs. 2.1 +/- 0.6, p = 0.77) or peak systolic velocity (1.1 +/- 1.1 vs. 1.9 +/- 2.0 cm/s, p = 0.05) between segments with and without PST Peri-infarction ischemia or viability during DSE was more frequently observed in segments with PST than in those without (86 vs. 24%, p < 0.05). The sensitivity and specificity of PST for prediction of peri-infarction viability or ischemia was 82 and 81%, respectively. Conclusions: Postsystolic thickening in the infarct territory detected by DMI is closely related with peri-infarction ischemia or viability at DSE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To seek an association between total arterial compliance (TAC) and the extent of ischaemia at stress echocardiography. Design: Cohort study. Setting: Regional cardiac centre. Methods: 255 consecutive patients (147 men; mean (SD) age 58 (8)) presenting for stress echocardiography for clinical indications were studied. Wall motion score index (WMSI) was calculated and ischaemia was defined by an inducible or worsening wall motion abnormality. Peak WMSI was used to reflect the extent of dysfunction (ischaemia or scar), and Delta WMSI was indicative of extent of ischaemia. TAC was assessed at rest by simultaneous radial applanation tonometry and pulsed wave Doppler in all patients. Results: Ischaemia was identified by stress echocardiography in 65 patients (25%). TAC was similar in the groups with negative and positive echocardiograms (1.08 (0.41) v 1.17 (0.51) ml/ mm Hg, not significant). However, the extent of dysfunction was associated with TAC independently of age, blood pressure, risk factors, and use of a beta blocker. Moreover, the extent of ischaemia was determined by TAC, risk factors, and use of a b blocker. Conclusion: While traditional cardiovascular risk factors are strong predictors of ischaemia on stress echocardiography, TAC is an independent predictor of the extent of ischaemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain and strain rate (SR) are measures of deformation that are basic descriptors of both the nature and the function of cardiac tissue. These properties may now be measured using either Doppler or two-dimensional ultrasound techniques. Although these measurements are feasible in routine clinical echocardiography, their acquisition and analysis nonetheless presents a number of technical challenges and complexities. Echocardiographic strain and SR imaging has been applied to the assessment of resting ventricular function, the assessment of myocardial viability using low-dose dobutamine infusion, and stress testing for ischemia. Resting function assessment has been applied in both the left and the fight ventricles, and may prove particularly valuable for identifying myocardial diseases and following up the treatment response. Although the evidence base is limited, SR imaging seems to be feasible and effective for the assessment of myocardial viability. The use of the technique for the detection of ischemia during stress echocardiography is technically challenging and likely to evolve further. The clinical availability of strain and SR measurement may offer a solution to the ongoing need for quantification of regional and global cardiac function. Nonetheless, these techniques are susceptible to artifact, and further technical development is necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biventdcular (BV) pacing is evaluated as an alternative treatment for patients with dilated cardiomyppathy (both ischemic and non-ischemic) and end-stage heart failure. Colour tissue Doppler imaging using echocardiography allows noninvasive, quantitative assessment of radial motion in the long-axis with measurement of peak systolic velocity timing. The aim of the present study was to evaluate quantitatively, the systolic performance of the left ventricle and the resynchrenization of contraction (before vs after implantation). Patients and methods: 25 patients with dilated cardiomyopathy (11 ischemic), NYHA class III or IV, QRS duration >120 ms received a biventricular pacemaker. Routine 2D echo and colour tissue Doppler imaging were performed before and within 1 week following implantation. LVEF was assessed using the biplane Sampson's method.Peak systolic velocity (PSV) and time to PSV (TPV) were assessed in 4 regions (basal anterior, inferior, lateral and septal). By averaging the TPV from all 4 regions, a synchronization index was dedved from these measurements. Reaults: LVEF improved by 9±9% following pacing; 17 patients improved LVEF 5% or more. The change in PSV in the septal and lateral regions related significantly to the change in LVEF (r=0.74, r=0.62).The change in synchronization index before vs after pacing (as a measurement of REsynchronization) was related to the change in LVEF (y=120x+5.6, r=0.79, P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Exercise therapy improves functional capacity in CHF, but selection and individualization of training would be helped by a simple non-invasive marker of peak VO2. Peak VO2 in these pts is difficult to predict without direct measurement, and LV ejection fraction is a poor predictor. Myocardial tissue velocities are less load-dependent, and may be predictive of the exercise response in CHF pts. We sought to use tissue velocity as a predictor of peak VO2 in CHF pts. Methods. Resting 2D-echocardiography and tissue Doppler imaging were performed in 182 CHF pts (159 male, age 62±10 years) before and after metabolic exercise testing. The majority of these patients (129, 71%) had an ischemic cardiomyopathy, with resting EF of 35±13% and a peak VO2 of 13.5±4.7 ml/kg/min. Results. Neither resting EF (r=0.15) nor peak EF (r=0.18, both p=NS) were correlated with peak VO2. However, peak VO2 correlated with peak systolic velocity in septal (Vss, r=0.31) and lateral walls (Vsl, r=0.26, both p=0.01). In a general linear model (r2 = 0.25), peak VO2 was calculated from the following equation: 9.6 + 0.68*Vss - 0.09*age + 0.06*maximum HR. This model proved to be a superior predictor of peak VO2 (r=0.51, p=0.01) than the standard prediction equations of Wasserman (r= -0.12, p=0.01). Conclusions. Resting tissue Doppler, age and maximum heart rate may be used to predict functional capacity in CHF patients. This may be of use in selecting and following the response to therapy, including for exercise training.