36 resultados para Easy Java Simulations
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.
Resumo:
We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.
Resumo:
With the advent of object-oriented languages and the portability of Java, the development and use of class libraries has become widespread. Effective class reuse depends on class reliability which in turn depends on thorough testing. This paper describes a class testing approach based on modeling each test case with a tuple and then generating large numbers of tuples to thoroughly cover an input space with many interesting combinations of values. The testing approach is supported by the Roast framework for the testing of Java classes. Roast provides automated tuple generation based on boundary values, unit operations that support driver standardization, and test case templates used for code generation. Roast produces thorough, compact test drivers with low development and maintenance cost. The framework and tool support are illustrated on a number of non-trivial classes, including a graphical user interface policy manager. Quantitative results are presented to substantiate the practicality and effectiveness of the approach. Copyright (C) 2002 John Wiley Sons, Ltd.
Quantification and assessment of fault uncertainty and risk using stochastic conditional simulations