22 resultados para ENDOCRINE DISRUPTION
Resumo:
Background: The surgical management of patients with multiple endocrine neoplasia-2A (MEN-2A) continues to evolve with specific genotype-phenotype correlations allowing for a more tailored approach. In this study, we report the surgical management of one of the largest MEN-2A families with a rearranged during transfection (RET) codon 804 mutation. Method: This is a cohort study comprising all at-risk kindred within a single known MEN-2A family. Prophylactic total thyroidectomy with lymph node dissection was recommended to all mutation carriers aged 5 years and older. Results: There were a total of 48 at-risk individuals in the MEN-2A kindred, with 22 patients undergoing thyroidectomy after appropriate preoperative evaluation. A total of 9 patients had medullary thyroid cancer including 5 with a normal preoperative calcitonin level. A total of 11 patients had C-cell hyperplasia and 7 showed histological evidence of parathyroid disease. Only the index case had a phaeochromocytoma. Conclusion: Genetic testing for germline mutations in the RET proto-oncogene has allowed precise identification of affected RET carriers and provided the opportunity for prophylactic or 'preclinical' surgery to treat and in fact to prevent medullary thyroid cancer. This concept of prophylactic surgery based on a genetic test is likely to be applied more widely as the tools of molecular biology advance.
Resumo:
We present a machine learning model that predicts a structural disruption score from a protein’s primary structure. SCHEMA was introduced by Frances Arnold and colleagues as a method for determining putative recombination sites of a protein on the basis of the full (PDB) description of its structure. The present method provides an alternative to SCHEMA that is able to determine the same score from sequence data only. Circumventing the need for resolving the full structure enables the exploration of yet unresolved and even hypothetical sequences for protein design efforts. Deriving the SCHEMA score from a primary structure is achieved using a two step approach: first predicting a secondary structure from the sequence and then predicting the SCHEMA score from the predicted secondary structure. The correlation coefficient for the prediction is 0.88 and indicates the feasibility of replacing SCHEMA with little loss of precision. ©2005 IEEE