73 resultados para ELEMENT-BINDING PROTEIN-1
Resumo:
Objective To explore whether abnormalities in growth hormone binding protein (GHBP) may underlie the growth restriction associated with fetal aneuploidy. Design A retrospective casecontrol study. Setting Monash Medical Centre, Clayton, Victoria, Australia. Population Twenty-one trisomy 18, and 30 trisomy 21 pregnancies, and 170 chromosomally normal pregnancies at 15-18 weeks of gestation representing three to five controls per case matched for source, gestation and duration of storage. Methods GHBP was measured using a ligand immunofunctional assay. Results In the chromosomally normal pregnancies GHBP levels decreased slightly but significantly across the narrow gestational window studied. Compared with controls, levels of GHBP, expressed as median (95% CI) multiples of the median (MoM), in the trisomy 21 pregnancies were similar, 1.0 (0.92-1.39) MoM and 1.27 (1.04-1.50) MoM, respectively; P = 0.061 (Mann-Whitney CI test) but were significantly reduced in the trisomy 18 pregnancies, 0.68 (0.51-0.84) MoM; P = 0.0014 (Mann-Whitney U test). Conclusions These data suggest that decreased levels of maternal growth hormone binding protein, and by implication growth hormone receptor complement, may underlie the early severe growth restriction that is characteristic of trisomy 18.
Resumo:
Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.
Resumo:
The dietary supply of folates and their measurement are both affected, potentially, by the instability of some folates. Labile folates appear to be stabilized by binding to folate-binding protein (FBP); this paper reports measurements of that stabilization. The degradation rates of the very labile tetrahydrofolate (H(4)folate) and moderately labile 5-methyltetrahydrofolate (5-CH(3)H(4)folate) were measured with the compounds free or bound to either soluble or immobilized bovine milk FBP. Complexation increased stability from 2- to > 1000-fold, depending on buffer and temperature conditions. H(4)folate at 4degreesC and pH 6.7 appeared to be quite stable for > 100 d when bound to soluble FBP but had a half-life of < 1 h when free. Stabilization of milk folates may be a role of FBP and would improve the bioavailability of milk folate to newborns and other consumers.
Resumo:
Plasma concentrations of growth hormone (GH) were measured in the brushtail possum (Trichosurus vulpecula) pouch young from 25 through to 198 days post-partum (n=71). GH concentrations were highest early in pouch life (around 100 ng/ml), and thereafter declined in an exponential fashion to reach adult concentrations (10.8 +/- 1.8 ng/ml; n=21) by approximately 121-145 days post-partum, one to two months before the young is weaned. Growth hormone-binding protein (GHBP), which has been shown to modify the cellular actions of GH in eutherian mammals, was identified for the first time in a marsupial. Based on size exclusion gel filtration, possum GHBP had an estimated molecular mass of approximate to 65 kDa, similar to that identified in other mammalian species, and binding of I-125-labelled human GH (hGH) was displaced by excess hGH (20 mug). An immunoprecipitation method, in which plasma GHBP was rendered polyethylene glycol precipitable with a monoclonal antibody to the rabbit GHBP/GH receptor (MAb 43) and labelled with I-125-hGH, was used to quantitate plasma GHBP by Scatchard analysis in the developing (pooled plasma samples) and adult (individual animals) possums. Binding affinity (K-a) values in pouch young aged between 45 and 54 and 144 and 153 days post-partum varied between 1.0 and 2.4 x 10(9)/M, which was slightly higher than that in adult plasma (0.96 +/- 0.2 x 10(9)/M, n = 6). Binding capacity (B-max) values increased from non-detectable levels in animals aged 25-38 days post-partum to reach concentrations around half that seen in the adult (1.4 +/- 0.2 x 10(-9) M) by about 117 days post-partum and remained at this level until 153 days post-partum. Therefore, in early pouch life when plasma GH concentrations are highest, the very low concentrations of GHBP are unlikely to be important in terms of competing with GH-receptor for ligand or altering the half-life of circulating GH.
Resumo:
Disposition kinetics of [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [H-3] palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [H-3] palmitate and metabolites were measured in four experimentalgroups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [H-3] palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [H-3] palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.
Resumo:
Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with similar to 50% protein identity to adenosyl homocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-L-homocysteine, the by-product of S-adenosyl-L-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs(zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
We have previously isolated and characterized murine MYB binding protein (p160) 1a, a protein that specifically interacts with the leucine zipper motif within the negative regulatory domain of the c-Myb proto-oncoprotein, We now describe the molecular cloning of the human MYBBP1A cDNA and chromosomal localization to 17p13.3 by fluorescence in situ hybridization analysis, Given the likely presence of a tumor suppressor gene (or genes) within this region of chromosome 17, the position of MYBBP1A was further mapped by radiation hybrid analysis and was found to lie between markers D17S1828 and D17S938. A P1 artificial chromosome clone containing the 5' region of MYBBP1A was isolated and indicates a physical linkage between MYBBP1A and the 15-lipoxygenase gene (ALOX15), A novel, polymorphic (CA)(25) dinucleotide repeat was also isolated from this PAC and may serve as a useful marker for MYBBP1A and this region of chromosome 17. (C) 1999 Academic Press.
Resumo:
Within steroid receptor heterocomplexes the large tetraticopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (HspSO) and act coordinately with HspSO to modulate receptor activity. The reversible nature of the interaction between the immunophilins and HspSO suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a fi-kilobase (kb) 5 ' -flanking region of the human gene and demonstrated that a similar to 50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABP alpha and GABP beta subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GAFF is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression.
Resumo:
Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Human sulfotransferase SULT1A1 is an important phase II xenobiotic metabolizing enzyme that is highly expressed in the liver and mediates the sulfonation of drugs, carcinogens, and steroids. Until this study, the transcriptional regulation of the SULT1A subfamily had been largely unexplored. Preliminary experiments in primary human hepatocytes showed that SULT1A mRNA levels were not changed in response to nuclear receptor activators, such as dexamethasone and 3-methylcolanthrene, unlike other metabolizing enzymes. Using HepG2 cells, the high activity of the TATA-less SULT1A1 promoter was shown to be dependent on the presence of Sp1 and Ets transcription factor binding sites (EBS), located within - 112 nucleotides from the transcriptional start site. The homologous promoter of the closely related SULT1A3 catecholamine sulfotransferase, which is expressed at negligible levels in the adult liver, displayed 70% less activity than SULT1A1. This was shown to be caused by a two-base pair difference in the EBS. The Ets transcription factor GA binding protein (GABP) was shown to bind the SULT1A1 EBS and could transactivate the SULT1A1 promoter in Drosophila melanogaster S2 cells. Cotransfection of Sp1 could synergistically enhance GABP-mediated activation by 10-fold. Although Sp1 and GABP alone could induce SULT1A3 promoter activity, the lack of the EBS on this promoter prevented a synergistic interaction between the two factors. This study reports the first insight into the transcriptional regulation of the SULT1A1 gene and identifies a crucial difference in regulation of the closely related SULT1A3 gene, which accounts for the two enzymes' differential expression patterns observed in the adult liver.