36 resultados para Drugs and pharmacology
Resumo:
Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
Resumo:
This paper reviews evidence on two hypotheses about the relationship between cannabis use and psychosis. The first hypothesis is that heavy cannabis use may cause a cannabis psychosis-a psychosis that would not occur in the absence of cannabis use, the symptoms of which are preceded by heavy cannabis use and remit after abstinence. The second hypothesis is that cannabis use may precipitate schizophrenia, or exacerbate its symptoms. Evaluation of these hypotheses requires evidence of an association between cannabis use and psychosis, that is unlikely to be due to chance, in which cannabis use precedes psychosis, and in which we can exclude the hypothesis that the relationship is due to other factors, such as other drug use, or a personal vulnerability to psychosis. There is some clinical support for the first hypothesis. If these disorders exist they seem to be rare, because they require very high doses of THC, the prolonged use of highly potent forms of cannabis, or a pre-existing (but as yet unspecified) vulnerability. There is more support for the second hypothesis, in that a large prospective study has shown a linear relationship between the frequency with which cannabis has been used by age 18 and the risks over the subsequent 15 years of a diagnosis of schizophrenia. It is still unclear whether this means that cannabis use precipitates schizophrenia, whether it is a form of self-medication, or whether the association is due to the use of other drugs, such as amphetamines, which heavy cannabis users are more Likely to use. There is stronger evidence that cannabis use can exacerbate the symptoms of schizophrenia. Mental health services should identify patients with schizophrenia who use alcohol, cannabis and other drugs and advise them to abstain or to greatly reduce their drug use.
Resumo:
Arylamine N-acetyltransferase-1 (NAT1) is a polymorphically expressed enzyme that is widely distributed throughout the body. In the present study, we provide evidence for substrate-dependent regulation of this enzyme. Human peripheral blood mononuclear cells cultured in medium supplemented with p-aminobenzoic acid (PABA; 6 mu M) for 24 h showed a significant decrease (50-80%) in NAT1 activity. The loss of activity was concentration-dependent (EC50 similar to 2 mu M) and selective because PABA had no effect on the activity of constitutively expressed lactate dehydrogenase or aspartate aminotransferase. PABA also induced down-regulation of NAT1 activity in several human cell lines grown at confluence. Substrate-dependent downregulation was not restricted to PABA. Addition of other NAT1 substrates, such as p-aminosalicylic acid, ethyl-p-aminobenzoate, or p-aminophenol to peripheral blood mononuclear cells in culture also resulted in significant (P < .05) decreases in NAT1 activity. However, addition of the NAT2-selective substrates sulfamethazine, dapsone, or procainamide did not alter NAT1 activity. Western blot analysis using a NAT1-specific antibody showed that the loss of NAT1 activity was associated with a parallel reduction in the amount of NAT1 protein (r(2) = 0.95). Arylamines that did not decrease NAT1 activity did not alter NAT1 protein levels. Semiquantitative reverse transcriptase polymerase chain reaction of mRNA isolated from treated and untreated cells revealed no effect of PABA on NAT1 mRNA levels. We conclude that NAT1 can be down-regulated by arylamines that are themselves NAT1 substrates. Because NAT1 is involved in the detoxification/activation of various drugs and carcinogens, substrate-dependent regulation may have important consequences with regard to drug toxicity and cancer risk.
Resumo:
Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.
Resumo:
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (similar to4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cyclotides are a novel class of circular, disulfide-rich peptides (similar to 30 amino acids) that display a broad range of bioactivities and have exceptionally high stability. Their physical properties, which include resistance to thermal and enzymatic degradation, can be attributed to their unique cyclic backbone and knotted arrangement of disulfide bonds. The applicability of linear peptides as drugs is potentially limited by their susceptibility to proteolytic cleavage and poor bioavailability. Such limitations may be overcome by using the cyclotide framework as a scaffold onto which new activities may be engineered. The potential use of cyclotides for drug design is evaluated here, with reference to rapidly increasing knowledge of natural cyclotides and the emergence of new techniques in peptide engineering.
Resumo:
Sulfotransferases (SULTs) catalyse the sulfonation of both endogenous and exogenous compounds including hormones, catecholamines. drugs and xenobiotics. While in most occasions, sulfonation is a detoxication pathway. in the case of certain drugs and carcinogens. it leads to metabolic activation. Since, the rabbit has been extensively used for both pharmacological and toxicological studies, the purpose of this study was to further characterise the sulfotransferase system of this animal. In the present study, a novel sulfotransferase isoform (GenBank Accession no. AF360872) was isolated from a rabbit liver cDNA lambdaZAP 11 library. The full-length sequence of the clone was 1138 bp long and contained a coding region of 888 bp encoding a cytosolic protein of 295 amino acids (deduced molecular weight 34,193 Da). The amino acid sequence of this novel SULT isoform showed >70% identity with members of the SULT1A subfamily of sulfotransferases from other species. Upon expression of the encoded rabbit sulfotransferase in Escherchia coli (E. coli), it was shown that the enzyme was capable of sulfonating both p-nitrophenot (K-m and V-max values of 0.15 muM and 897.5 nmol/min/mg protein. respectively) and dopamine (K-m and V-max values of 175.3 muM and 151.1 nmol/min/mg protein, respectively). Based on the sequence data obtained and substrate specificity, this new rabbit sulfotransferase was named rabSULT1A1. Immunoblotting was used to demonstrate that rabSULT1A1 protein is expressed in liver, duodenum, jejunum, ileum, colon and recturm. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The taxi industry provides a strategic site to explore workplace deviance in low supervision, low status, occupational settings. Despite this theoretical opportunity and the objective importance of the taxi industry worldwide, very little is known about deviance among taxi drivers. Making use of interview data, this exploratory study maps out forms of workplace deviance and the explanations given for them by a sample of male taxi drivers. Major illegal activities reported included speeding, driving unsafe vehicles, taking drugs, and fraud. Theories pertaining to worker alienation, stress management, victim precipitation, and social control were relevant to the rationalizations some of the drivers provided to account for their illegal behaviors. We conclude that the occupational culture of taxi drivers and the structure of the taxi industry facilitate the forms of deviance reported here.
Resumo:
Rural and remote areas of Australia offer many opportunities for innovation in healthcare services. Some true healthcare 'network' models based around rural pharmacy can be established and evaluated. The lines between community and hospital pharmacy are often blurred and communication between health professionals enhanced. The blurring divide between hospital and community pharmacy in rural and remote areas has provided significant advances in practice. Projects have been set up to investigate the feasibility of community pharmacists integrating care for patients. These projects take advantage of the dual roles and the enhanced interaction between pharmacists and other health professionals in the bush. Opportunities for provision of clinical services beyond the traditional supply role have been taken in a number of remote communities
Resumo:
The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.
Resumo:
Objective: Secondary analyses of a previously conducted 1-year randomized controlled trial were performed to assess the application of responder criteria in patients with knee osteoarthritis (OA) using different sets of responder criteria developed by the Osteoarthritis Research Society International (OARSI) (Propositions A and B) for intra-articular drugs and Outcome Measures in Arthritis Clinical Trials (OMERACT)-OARSI (Proposition D). Methods: Two hundred fifty-five patients with knee OA were randomized to appropriate care with hylan G-F 20 (AC + H) or appropriate care without hylan G-F 20 (AC). A patient was defined as a responder at month 12 based on change in Western Ontario and McMaster Universities Osteoarthritis Index pain and function (0-100 normalized scale) and patient global assessment of OA in the study knee (at least one-category improvement in very poor, poor, fair, good and very good). All propositions incorporate both minimum relative and absolute changes. Results: Results demonstrated that statistically significant differences in responders between treatment groups, in favor of hylan G-F 20, were detected for Proposition A (AC + H = 53.5%, AC = 25.2%), Proposition B (AC + H = 56.7%, AC = 32.3%) and Proposition D (AC + H = 66.9%, AC = 42.5%). The highest effectiveness in both treatment groups was observed with Proposition D, whereas Proposition A resulted in the lowest effectiveness in both treatment groups. The treatment group differences always exceeded the required 20% minimum clinically important difference between groups established a priori, and were 28.3%, 24.4% and 24.4% for Propositions A, B and D, respectively. Conclusion: This analysis provides evidence for the capacity of OARSI and OMERACT-OARSI responder criteria to detect clinically important statistically detectable differences between treatment groups. (C) 2004 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: Antidepressant drugs and cognitive-behavioural therapy (CBT) are effective treatment options for depression and are recommended by clinical practice guidelines. As part of the Assessing Cost-effectiveness - Mental Health project we evaluate the available evidence on costs and benefits of CBT and drugs in the episodic and maintenance treatment of major depression. Method: The cost-effectiveness is modelled from a health-care perspective as the cost per disability-adjusted life year. Interventions are targeted at people with major depression who currently seek care but receive non-evidence based treatment. Uncertainty in model inputs is tested using Monte Carlo simulation methods. Results: All interventions for major depression examined have a favourable incremental cost-effectiveness ratio under Australian health service conditions. Bibliotherapy, group CBT, individual CBT by a psychologist on a public salary and tricyclic antidepressants (TCAs) are very cost-effective treatment options falling below $A10 000 per disability-adjusted life year (DALY) even when taking the upper limit of the uncertainty interval into account. Maintenance treatment with selective serotonin re-uptake inhibitors (SSRIs) is the most expensive option (ranging from $A17 000 to $A20 000 per DALY) but still well below $A50 000, which is considered the affordable threshold. Conclusions: A range of cost-effective interventions for episodes of major depression exists and is currently underutilized. Maintenance treatment strategies are required to significantly reduce the burden of depression, but the cost of long-term drug treatment for the large number of depressed people is high if SSRIs are the drug of choice. Key policy issues with regard to expanded provision of CBT concern the availability of suitably trained providers and the funding mechanisms for therapy in primary care.