80 resultados para Divergence time estimation
Resumo:
Latitudinal clines provide natural systems that may allow the effect of natural selection on the genetic variance to be determined. Ten clinal populations of Drosophila serrata collected from the eastern coast of Australia were used to examine clinal patterns in the trait mean and genetic variance of the life-history trait egg-to-adult development time. Development time significantly lengthened from tropical areas to temperate areas. The additive genetic variance for development time in each population was not associated with latitude but was associated with the population mean development time. Additive genetic variance tended to be larger in populations with more extreme development times and appeared to be consistent with allele frequency change. In contrast, the nonadditive genetic variance was not associated with the population mean but was associated with latitude. Levels of nonadditive genetic variance were greatest in the region of the cline where the gradient in the change in mean was greatest, consistent with Barton's (1999) conjecture that the generation of linkage disequilibrium may become an important component of the genetic variance in systems with a spatially varying optimum.
Resumo:
This article presents Monte Carlo techniques for estimating network reliability. For highly reliable networks, techniques based on graph evolution models provide very good performance. However, they are known to have significant simulation cost. An existing hybrid scheme (based on partitioning the time space) is available to speed up the simulations; however, there are difficulties with optimizing the important parameter associated with this scheme. To overcome these difficulties, a new hybrid scheme (based on partitioning the edge set) is proposed in this article. The proposed scheme shows orders of magnitude improvement of performance over the existing techniques in certain classes of network. It also provides reliability bounds with little overhead.
Resumo:
This paper presents a metafrontier production function model for firms in different groups having different technologies. The metafrontier model enables the calculation of comparable technical efficiencies for firms operating under different technologies. The model also enables the technology gaps to be estimated for firms under different technologies relative to the potential technology available to the industry as a whole. The metafrontier model is applied in the analysis of panel data on garment firms in five different regions of Indonesia, assuming that the regional stochastic frontier production function models have technical inefficiency effects with the time-varying structure proposed by Battese and Coelli ( 1992).
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Adaptive phase estimation is the process of estimating the phase of an electromagnetic field via a continually changing measurement. The measurement is varied in an attempt to optimize it at each moment. In this paper, we show that adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light even when small time delays in the feedback are present. (c) 2005 Pleiades Publishing Inc.
Resumo:
Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
In various signal-channel-estimation problems, the channel being estimated may be well approximated by a discrete finite impulse response (FIR) model with sparsely separated active or nonzero taps. A common approach to estimating such channels involves a discrete normalized least-mean-square (NLMS) adaptive FIR filter, every tap of which is adapted at each sample interval. Such an approach suffers from slow convergence rates and poor tracking when the required FIR filter is "long." Recently, NLMS-based algorithms have been proposed that employ least-squares-based structural detection techniques to exploit possible sparse channel structure and subsequently provide improved estimation performance. However, these algorithms perform poorly when there is a large dynamic range amongst the active taps. In this paper, we propose two modifications to the previous algorithms, which essentially remove this limitation. The modifications also significantly improve the applicability of the detection technique to structurally time varying channels. Importantly, for sparse channels, the computational cost of the newly proposed detection-guided NLMS estimator is only marginally greater than that of the standard NLMS estimator. Simulations demonstrate the favourable performance of the newly proposed algorithm. © 2006 IEEE.
Resumo:
We describe methods for estimating the parameters of Markovian population processes in continuous time, thus increasing their utility in modelling real biological systems. A general approach, applicable to any finite-state continuous-time Markovian model, is presented, and this is specialised to a computationally more efficient method applicable to a class of models called density-dependent Markov population processes. We illustrate the versatility of both approaches by estimating the parameters of the stochastic SIS logistic model from simulated data. This model is also fitted to data from a population of Bay checkerspot butterfly (Euphydryas editha bayensis), allowing us to assess the viability of this population. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
One aim of providing enrichment to captive animals is to promote the expression of behavioural patterns similar to their wild conspecifics. We evaluated the effectiveness of four types of simple feeding enrichment, using surveillance cameras to record the behaviour of 11 captive squirrel monkeys housed in a single enclosure at Alma Park Zoo in Brisbane, Australia. The enrichment involved differences in presentation (whole/chopped) and distribution (localised/scattered) of fruit and vegetables that were part of the normal diet of these animals. Distinguishing between individual squirrel monkeys was not possible from the videos, so Instantaneous Scan Sampling was used to record the numbers of animals performing particular behaviours every 15 minutes over the 24 hour period as well as every 5 minutes for the hour following provision of enrichment. This provided an estimation of the percentage of time spent by the group in various activities. As a result of the enrichment, the activity budget of the group more closely approximated that of wild squirrel monkeys. However on a number of occasions where the enrichment required the squirrel monkeys to work to obtain their food (whole fruit and vegetables), a number of individuals became aggressive towards the zookeepers. This result highlights the variation in responses of individual animals towards enrichment and indicates that in enclosures with large numbers of animals, the response of each individual should be evaluated in addition to the overall benefit of the enrichment for the group. Furthermore, this variation also suggests that it may be beneficial to provide the animals with choices of enrichment as opposed to providing single forms of enrichment that may only be effective for a proportion of the animals in the enclosure, and may even result in undesirable responses from some individuals.
Resumo:
We present a novel nonparametric density estimator and a new data-driven bandwidth selection method with excellent properties. The approach is in- spired by the principles of the generalized cross entropy method. The pro- posed density estimation procedure has numerous advantages over the tra- ditional kernel density estimator methods. Firstly, for the first time in the nonparametric literature, the proposed estimator allows for a genuine incor- poration of prior information in the density estimation procedure. Secondly, the approach provides the first data-driven bandwidth selection method that is guaranteed to provide a unique bandwidth for any data. Lastly, simulation examples suggest the proposed approach outperforms the current state of the art in nonparametric density estimation in terms of accuracy and reliability.
Resumo:
Since their discovery 150 years ago, Neanderthals have been considered incapable of behavioural change and innovation. Traditional synchronic approaches to the study of Neanderthal behaviour have perpetuated this view and shaped our understanding of their lifeways and eventual extinction. In this thesis I implement an innovative diachronic approach to the analysis of Neanderthal faunal extraction, technology and symbolic behaviour as contained in the archaeological record of the critical period between 80,000 and 30,000 years BP. The thesis demonstrates patterns of change in Neanderthal behaviour which are at odds with traditional perspectives and which are consistent with an interpretation of increasing behavioural complexity over time, an idea that has been suggested but never thoroughly explored in Neanderthal archaeology. Demonstrating an increase in behavioural complexity in Neanderthals provides much needed new data with which to fuel the debate over the behavioural capacities of Neanderthals and the first appearance of Modern Human Behaviour in Europe. It supports the notion that Neanderthal populations were active agents of behavioural innovation prior to the arrival of Anatomically Modern Humans in Europe and, ultimately, that they produced an early Upper Palaeolithic cultural assemblage (the Châtelperronian) independent of modern humans. Overall, this thesis provides an initial step towards the development of a quantitative approach to measuring behavioural complexity which provides fresh insights into the cognitive and behavioural capabilities of Neanderthals.
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Resumo:
The detection of seizure in the newborn is a critical aspect of neurological research. Current automatic detection techniques are difficult to assess due to the problems associated with acquiring and labelling newborn electroencephalogram (EEG) data. A realistic model for newborn EEG would allow confident development, assessment and comparison of these detection techniques. This paper presents a model for newborn EEG that accounts for its self-similar and non-stationary nature. The model consists of background and seizure sub-models. The newborn EEG background model is based on the short-time power spectrum with a time-varying power law. The relationship between the fractal dimension and the power law of a power spectrum is utilized for accurate estimation of the short-time power law exponent. The newborn EEG seizure model is based on a well-known time-frequency signal model. This model addresses all significant time-frequency characteristics of newborn EEG seizure which include; multiple components or harmonics, piecewise linear instantaneous frequency laws and harmonic amplitude modulation. Estimates of the parameters of both models are shown to be random and are modelled using the data from a total of 500 background epochs and 204 seizure epochs. The newborn EEG background and seizure models are validated against real newborn EEG data using the correlation coefficient. The results show that the output of the proposed models has a higher correlation with real newborn EEG than currently accepted models (a 10% and 38% improvement for background and seizure models, respectively).