69 resultados para Dibromopropanol phosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy) ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of using carbonized slash pine bark as a substitute for activated carbon was examined in this study. The bark was carbonized by slow heating in nitrogen for 6.5 h to 672 degrees C. The BET-N-2 surface area, average micropore and mesopore diameter, and micropore volume were 332 m(2) g(-1) 21.7 Angstrom, and 0.125 cm(3) g(-1), respectively. The adsorption capacities for phenol and pentachlorophenol (PCP) at pH 2 and pH 8 were evaluated. The Langmuir equation provided a slightly better fit than the Freundlich equation to two sets of phenol data. The calculated Freundlich constants, K = 0.41 - 0.58 mmol/g/(mmol dm(-3))(1/n) and 1/n = 0.30 - 0.41, were lower and higher, respectively, than literature values for activated carbons. The adsorption capacity of the carbonized bark was much lower for PCP than for phenol. The protonated and anionic PCP isotherms were Type II or III, respectively, in the Brunauer classification. The BET equation provided the best fit to protonated PCP isotherm data. The anionic PCP data were fitted to both the BET model and an equation used in the literature to represent phosphate adsorption on activated carbons. Nonlinear regression of the data for both phenol and PCP adsorption with the Freundlich, Langmuir and BET equations generally gave more accurate parameters, compared with the use of linearized equations to obtain the parameters. (C) 1998 SCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six men were studied during four 30-s all-out exercise bouts on an air-braked cycle ergometer. The first three exercise bouts were separated by 4 min of passive recovery; after the third bout, subjects rested for 4 min, exercised for 30 min at 30-35% peak O-2 consumption, and rested for a further 60 min before completing the fourth exercise bout. Peak power and total work were reduced (P < 0.05) during bout 3 [765 +/- 60 (SE) W; 15.8 +/- 1.0 kJ] compared with bout 1 (1,168 +/- 55 mT, 23.8 +/- 1.2 kJ), but no difference in exercise performance was observed between bouts 1 and 4 (1,094 +/- 64 W, 23.2 +/- 1.4 kJ). Before bout 3, muscle ATP, creatine phosphate (CP), glycogen, pH, and sarcoplasmic reticulum (SR) Ca2+ uptake were reduced, while muscle lactate and inosine 5'-monophosphate were increased. Muscle ATP and glycogen before bout 4 remained lower than values before bout I (P < 0.05), but there were no differences in muscle inosine 5'-monophosphate, lactate, pH, and SR Ca2+ uptake. Muscle CP levels before bout 4 had increased above resting levels. Consistent with the decline in muscle ATP were increases in hypoxanthine and inosine before bouts 3 and 4. The decline in exercise performance does not appear to be related to a reduction in muscle glycogen. Instead, it may be caused by reduced CP availability, increased H+ concentration, impairment in SR function, or some other fatigue-inducing agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effects of 26 days of oral creatine monohydrate (Cr) supplementation on near-maximal muscular strength, high-intensity bench press performance, and body composition. Eighteen male powerlifters with at least 2 years resistance training experience took part in this 28-day experiment. Pre and postmeasurements (Days 1 and 28) were taken of near-maximal muscular strength, body mass, and % body fat. There were two periods of supplementation Days 2 to 6 and Days 7 to 27. ANOVA and t-tests revealed that Cr supplementation significantly increased body mass and lean body mass with no changes in % body fat. Significant increases in 3-RM strength occurred in both groups, both absolute and relative to body mass; the increases were greater in the Cr group. The change in total repetitions also increased significantly with Cr supplementation both in absolute terms and relative to body mass, while no significant change was seen in the placebo (P) group. Creatine supplementation caused significant changes in the number of BP reps in Sets 1, 4, and 5. No changes occurred in the P group. It appears that 26 days of Cr supplementation significantly improves muscular strength and repeated near-maximal BP performance, and induces changes in body composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strawberry (Fragaria ananassa cv. Shikinari) cell suspension cultures carried out in shake flasks for 18 d were closely examined for cell growth, anthocyanin synthesis and the development of pigmented cells in relation to the uptake of carbohydrate, extracellular PO4, NO3, NH4, and calcium. Cell viability, extracellular anthocyanin content, pH and electrical conductivity of the broth were also monitored. The specific growth rate of strawberry cells at exponential phase was 0.27 and 0.28 d(-1) based on fresh and dry weight, respectively. Anthocyanin synthesis was observed to increase continuously to a maximum value of 0.86 mg/g fresh cell weight (FCW) at day 6, and was partially growth-associated. Anthocyanin synthesis was linearly related to the increase in pigmented cell ratio, which increased with time and reached a maximum value of ca. 70% at day 6 due to reduction in cell viability and depletion of substrate. Total carbohydrate uptake was closely associated with increase in cell growth, and glucose was utilized in preference to fructose. Nitrate and ammonia were consumed until 9 d of culture, but phosphate was completely absorbed within 4 d. Calcium was assimilated throughout the growth cycle. After 9 d, cell lysis was observed which resulted in the leakage of intracellular substances and a concomitant pH rise. Anthocyanin was never detected in the broth although the broth became darkly pigmented during the lysis period. This suggests that anthocyanin was synthesized only by viable pigmented cells, and degraded rapidly upon cell death and lysis. Based on the results of kinetic analysis, a model was developed by incorporating governing equations for the ratio of pigmented cells into a Bailey and Nicholson's model. This was verified by comparison with the experimental data. The results suggest Bat the model satisfactorily describes the strawberry cell culture process, and may thus be used for process optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structures of free, substrate-bound and product-bound forms of Escherichia coli xanthine-guanine phosphoribosyltransferase (XGPRT) have been determined by X-ray crystallography. These are compared with the previously determined structure of magnesium and sulphate-bound XPRT. The structure of free XGPRT at 2.25 Angstrom resolution confirms the flexibility of residues in and around a mobile loop identified in other PRTases and shows that the cis-peptide conformation of Arg37 at the active site is maintained in the absence of bound ligands. The structures of XGPRT complexed with the purine base substrates guanine or xanthine in combination with cPRib-PP, an analog of the second substrate PRib-PP, have been solved to 2.0 Angstrom resolution. In these two structures the disordered phosphate-binding loop of uncomplexed XGPRT becomes ordered through interactions with the 5'-phosphate group of cPRib-PP. The cyclopentane ring of cPRib-PP has the C3 exo pucker conformation, stabilised by the cPRib-PP-bound Mg2+. The purine base specificity of XGPRT appears to be due to water-mediated interactions between the 2-exocyclic groups of guanine or xanthine and side-chains of Glu136 and Asp140, as well as the main-chain oxygen atom of Ile135. Asp92, together with Lys115, could help stabilise the N7-protonated tautomer of the incoming base and could act as a general base to remove the proton from N7 .when the nucleotide product is formed. The 2.6 Angstrom resolution structure of XGPRT complexed with product GMP is similar to the substrate-bound complexes. However, the ribose ring of GMP is rotated by similar to 24 degrees compared with the equivalent ring in cPRib-PP. This rotation results in the loss of all interactions between the ribosyl group and the enzyme in the product complex. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorylation of the tumor suppressor p53 is generally thought to modify the properties of the protein in four of its five independent domains. We used synthetic peptides to directly study the effects of phosphorylation on the non-sequence-specific DNA binding and conformation of the C-terminal, basic domain. The peptides corresponded to amino acids 361-393 and were either nonphosphorylated or phosphorylated at the protein kinase C (PKC) site, Ser378, or the casein kinase II (CKII) site, Ser392, or bis-phosphorylated on both the PKC and the CKII sites. A fluorescence polarization analysis revealed that either the recombinant p53 protein or the synthetic peptides bound to two unrelated target DNA fragments. Phosphorylation of the peptide at the PKC or the CKII sites clearly decreased DNA binding, and addition of a second phosphate group almost completely abolished binding. Circular dichroism spectroscopy showed that the peptides assumed identical unordered structures in aqueous solutions. The unmodified peptide, unlike the Ser378 phosphorylated peptide, changed conformation in the presence of DNA. The inherent ability of the peptides to form an alpha-helix could be detected when circular dichroism and nuclear magnetic resonance spectra were: taken in trifluoroethanol-water mixtures. A single or double phosphorylation destabilized the helix around the phosphorylated Ser378 residue but stabilized the helix downstream in the sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albicidins are important factors in systemic pathogenesis by Xanthomonas albilineans, which causes the devastating leaf scald disease of sugar cane. They ale also of substantial interest as antibiotics that selectively block prokaryote DNA replication. Albicidin biosynthesis is highly sensitive to medium composition. An optimized, chemically defined medium (SMG3) yielded 30-fold more albicidin from half the accumulated biomass, relative to sucrose peptone (SP) medium. Phosphate starvation stimulated albicidin production in SMG3 and SP media. Addition of other amino acids, ammonium ions or peptones to the defined medium increased the growth rate of X albilineans XA3, but differentially inhibited albicidin biosynthesis. Knowledge of these factors indicates new approaches to understanding mechanisms of pathogenesis and resistance to sugar cane leaf scald disease, and to strain improvement for production of albicidin antibiotics.