43 resultados para Determination of sex
Resumo:
The performance of three different techniques for determining proton rotating frame relaxation rates (T1pH) in charred and uncharred woods is compared. The variable contact time (VCT) experiment is shown to over-estimate T1pH, particularly for the charred samples, due to the presence of slowly cross-polarizing C-13 nuclei. The variable spin (VSL) or delayed contact experiment is shown to overcome these problems; however, care is needed in the analysis to ensure rapidly relaxing components are not overlooked. T1pH is shown to be non-uniform for both charred and uncharred wood samples; a rapidly relaxing component (T1pH = 0.46-1.07 ms) and a slowly relaxing component (T1pH = 3.58-7.49) is detected in each sample. T1pH for each component generally decreases with heating temperature (degree of charring) and the proportion of rapidly relaxing component increases. Direct T1pH determination (via H-1 detection) shows that all samples contain an even faster relaxing component (0.09-0.24 ms) that is virtually undetectable by the indirect (VCT and VSL) techniques. A new method for correcting for T1pH signal losses in spin counting experiments is developed to deal with the rapidly relaxing component detected in the VSL experiment. Implementation of this correction increased the proportion of potential C-13 CPMAS NMR signal that can be accounted for by up to 50% for the charred samples. An even greater proportion of potential signal can be accounted for if the very rapidly relaxing component detected in the direct T1pH determination is included; however, it must be kept in mind that this experiment also detects H-1 pools which may not be involved in H-1-C-13 cross-polarization. (C) 2002 Elsevier Science (USA).
Resumo:
The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.
Resumo:
This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.
Resumo:
A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1-4-mu m-diameter polystyrene spheres in a single-beam gradient trap using measurements of back-scattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10(-6) and 4 x 10(-6) N/m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction. (C) 1996 Optical Society of America.
Resumo:
Little consensus exists in the literature regarding methods for determination of the onset of electromyographic (EMG) activity. The aim of this study was to compare the relative accuracy of a range of computer-based techniques with respect to EMG onset determined visually by an experienced examiner. Twenty-seven methods were compared which varied in terms of EMG processing (low pass filtering at 10, 50 and 500 Hz), threshold value (1, 2 and 3 SD beyond mean of baseline activity) and the number of samples for which the mean must exceed the defined threshold (20, 50 and 100 ms). Three hundred randomly selected trials of a postural task were evaluated using each technique. The visual determination of EMG onset was found to be highly repeatable between days. Linear regression equations were calculated for the values selected by each computer method which indicated that the onset values selected by the majority of the parameter combinations deviated significantly from the visually derived onset values. Several methods accurately selected the time of onset of EMG activity and are recommended for future use. Copyright (C) 1996 Elsevier Science Ireland Ltd.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
Solid-state C-13 NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-C-13]Gly3-[2-C-13]Ala4, [1-C-13]Gly3-[2-C-13]Leu6, [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-C-13]Gly3-[2-C-13]Ala4 and [1-C-13]Gly3-[2-C-13]Leu6 were consistent with alpha -helical structure in the N-terminus irrespective of environment. The Internuclear distances measured in [1-C-13]Leu13-[2-C-13]Ala15, [2-C-13]Leu13-[1-C-13]Ala15, and [1-C-13]Leu13-[2-C-13]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees) than in lyophilized powder (121 degrees -139 degrees) or crystals (129 degrees). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (similar to 160 degrees) (R. Smith, F. Separovic, T. J. Milne, A. Whittaker, F. M. Bennett, B. A. Cornell, and A. Makriyannis, 1994, J. Mol, Biol 241:456-466). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.
Resumo:
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Resumo:
The radiation chemistry of FEP copolymer with a mole fraction TFE of 0.90 has been studied using Co-60 gamma -radiation at temperatures of 300 and 363 K. New structure formation in the copolymers was analysed by solid state F-19 NMR. New chain scission products were the principal new structures found. The G-value for the formation of new -CF3 groups was 2.2 and 2.1 for the radiolysis of FEP at 300 and 363 K, respectively, and the G-value for the loss of original -CF3 groups was G(-CF3) = 1.0 and 0.9 at these two temperatures, respectively. There was a nett loss of -CF- groups on irradiation, with G(-CF) of 1.3 and 0.9 at 300 and 363 K, respectively. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state F-19 NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of-O-CF3 and -CF2-CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the -CF2-CF3 chain ends and -CF- branch points mere not linearly related ia the composition. rather they wets correlated with the radical yields measured at 77 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Current methods to detect transduction efficiency during the routine use of integrating retroviral vectors in gene therapy applications may require the use of radioactivity and usually rely upon subjective determination of the results. We have developed two competitive quantitative assays that use an enzyme-linked, amplicon hybridization assay (ELAHA) to detect the products of PCR-amplified regions of transgene from cells transduced with Moloney murine leukemia virus vectors. The quantitative assays (PCR-ELAHA) proved to be simple, rapid, and sensitive, avoiding the need for Southern hybridization, complex histochemical stains, or often subjective and time-consuming tissue culture and immunofluorescence assays. The PCR-ELAHA systems can rapidly detect proviral DNA from any retroviral vector carrying the common selective and marker genes neomycin phosphotransferase and green fluorescent protein, and the methods described are equally applicable to other sequences of interest, providing a cheaper alternative to the evolving real-time PCR methods. The results revealed the number of copies of retrovector provirus present per stably transduced cell using vectors containing either one or both qPCR targets.
Resumo:
The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.