45 resultados para Deformations of analytic structures
Resumo:
Physical education, now often explicitly identified with health in contemporary school curricula, continues to be implicated in the (re)production of the 'cult of the body'. We argue that HPE is a form of health promotion that attempts to 'make' healthy citizens of young people in the context of the 'risk society'. In our view there is still work to be done in understanding how and why physical education (as HPE) continues to be implicated in the reproduction of values associated with the cult of body. We are keen to understand why HPE continues to be ineffective in helping young people gain some measure of analytic and embodied 'distance' from the problematic aspects of the cult of the body. This paper offers an analysis of this enduring issue by using some contemporary analytic discourses including 'governmentality', 'risk society' and the 'new public health'.
Resumo:
Sections of microspores, some cingulate, one zonate and one saccate, are discussed and illustrated. It is shown that sections aid the elucidation of wall structures; thus diagnoses can be more precisely written and this may eventually remove some classificatory difficulties. A sectioning technique is described.
Resumo:
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development. (C) 1997 Wiley-Liss, Inc.
Resumo:
Background: kappa-PVIIA is a 27-residue polypeptide isolated from the venom of Conus purpurascens and is the first member of a new class of conotoxins that block potassium channels. By comparison to other ion channels of eukaryotic cell membranes, voltage-sensitive potassium channels are relatively simple and methodology has been developed for mapping their interactions with small-peptide toxins, PVIIA, therefore, is a valuable new probe of potassium channel structure. This study of the solution structure and mode of channel binding of PVIIA forms the basis for mapping the interacting residues at the conotoxin-ion channel interface. Results: The three-dimensional structure of PVIIA resembles the triple-stranded beta sheet/cystine-knot motif formed by a number of toxic and inhibitory peptides. Subtle structural differences, predominantly in loops 2 and 4, are observed between PVIIA and other conotoxins with similar structural frameworks, however. Electrophysiological binding data suggest that PVIIA blocks channel currents by binding in a voltage-sensitive manner to the external vestibule and occluding the pore, Comparison of the electrostatic surface of PVIIA with that of the well-characterised potassium channel blocker charybdotoxin suggests a likely binding orientation for PVIIA, Conclusions: Although the structure of PVIIA is considerably different to that of the alpha K scorpion toxins, it has a similar mechanism of channel blockade. On the basis of a comparison of the structures of PVIIA and charybdotoxin, we suggest that Lys19 of PVIIA is the residue which is responsible for physically occluding the pore of the potassium channel.
Resumo:
The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.
Resumo:
The three possible disulfide bonded isomers of alpha-conotoxin GI have been selectively synthesised and their structures determined by H-1 NMR spectroscopy. alpha-Conotoxin GI derives from the venom of Conus geographus and is a useful neuropharmacological tool as it selectively binds to the nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel involved in nerve signal transmission. The peptide has the sequence ECCNPACGRHYSC-NH2, and the three disulfide bonded isomers are referred to as GI(2-7;3-13), GI(2-13;3-7) and GI(2-3;7-13). The NMR structure for the native isomer GI(2-7;3-13) is of excellent quality, with a backbone pairwise RMSD of 0.16 Angstrom for a family of 35 structures, and comprises primarily a distorted 3(10),, helix between residues 5 to 11. The two non-native isomers exhibit multiple conformers in solution, with the major populated forms being different in structure both from each other and from the native form. Structure-activity relationships for the native GI(2-7;3-13) as well as the role of the disulfide bonds on folding and stability of the three isomers are examined. It is concluded that the disulfide bonds in alpha-conotoxin GI play a crucial part in determining both the structure and stability of the peptide. A trend for increased conformational heterogeneity was observed in the order of GI(2-7;3-13) < GI(2-13;3-7) < GI(2-3;7-13). It was found that the peptide bond joining Cys2 to Cys3 in GI(2-3;7-13) is predominantly trans, rather than cis as theoretically predicted. These structural data are used to interpret the varying nAChR binding of the non-native forms. A model for the binding of native GI(2-7;3-13) to the mammalian nAChR is proposed, with an alpha-subunit binding face made up of Cys2, Asn4, Pro5, Ala6 and Cys7 and a selectivity face, comprised of Arg9 and His10. These two faces orient the molecule between the alpha and delta subunits of the receptor. The structure of the CCNPAC sequence of the native GI(2-7;3-13) is compared to the structure of the identical sequence from the toxic domain of heat-stable enterotoxins, which forms part of the receptor binding region of the enterotoxins, but which has a different disulfide connectivity. (C) 1998 Academic Press Limited.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
Globalizing tendencies within capitalism are leading to important alterations in the structure of agricultural production and the ways food companies are involving themselves in processing and marketing. Increasingly, finance capital and transnational agribusiness have sought ways to influence, and in some cases redirect, farming activities in Australia. The penetration of farming structures by corporate capital has been hastened by state deregulation. Rather than providing detailed empirical evidence, this paper presents a broad synthesis of recent Australian research with the aim of informing readers otherwise unaware of events in the Antipodes of the forms and impacts of agri-food change in Australia.
Resumo:
alpha-Conotoxin ImI derives from the venom of Conus imperialis and is the first and only small-peptide ligand that selectively binds to the neuronal alpha(7) homopentameric subtype of the nicotinic acetylcholine receptor (nAChR). This receptor subtype is a possible drug target for several neurological disorders. The cysteines are connected in the pairs Cys2-Cys8 and Cys3-Cys12, To date it is the only alpha-conotoxin with a 4/3 residue spacing between the cysteines, The structure of ImI has been determined by H-1 NMR spectroscopy in aqueous solution, The NMR structure is of high quality, with a backbone pairwise rmsd of 0.34 Angstrom for a family of 19 structures, and comprises primarily a series of nested beta turns. Addition of organic solvent does not perturb the solution structure. The first eight residues of ImI are identical to the larger, but related, conotoxin EpI and adopt a similar structure, despite a truncated second loop. Residues important for binding of ImI to the alpha 7 nAChR are all clustered on one face of the molecule. Once further binding data for EPI and ImI are available, the ImI structure will allow for design of novel alpha(7) nAChR-specific agonists and antagonists with a wide range of potential pharmaceutical applications.
Resumo:
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.
Resumo:
In gastropod mollusks, neuroendocrine cells in the anterior ganglia have been shown to regulate growth and reproduction. As a first step toward understanding the molecular mechanisms underlying the regulation of these physiological processes in the tropical abalone Haliotis asinina, ive have identified sets of POU, Sox, and Pax transcription factor genes that are expressed in these ganglia. Using highly degenerate oligonucleotide primers designed to anneal to conserved codons in each of these gene families, we have amplified by reverse transcriptase polymerase chain reaction 2 POU genes (HasPOU-III and HasPOU-IV), 2 Sox genes (HasSox-B and HasSox-C), and two Pax genes (HasPax-258 and HaxPax-6). Analyses with gene-specific primers indicated that the 6 genes are expressed in the cerebral and pleuropedal ganglia of both reproductively active and spent adults, in a number of sensory structures, and in a subset of other adult tissues.
Resumo:
P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.
Resumo:
Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objectives: Resternotomy is a common part of cardiac surgical practice. Associated with resternotomy are the risks of cardiac injury and catastrophic hemorrhage and the subsequent elevated morbidity and mortality in the operating room or during the postoperative period. The technique of direct vision resternotomy is safe and has fewer, if any, serious cardiac injuries. The technique, the reduced need for groin cannulation and the overall low operative mortality and morbidity are the focus of this restrospective analysis. Methods: The records of 495 patients undergoing 546 resternotomies over a 21-year period to January 2000 were reviewed. All consecutive reoperations by the one surgeon comprised patients over the age of 20 at first resternotomy: M:F 343:203, mean age 57 years (range 20 to 85, median age 60). The mean NYHA grade was 2.3 [with 67 patients (1), 273 (11),159 (111), 43 (IV), and 4 (V classification)] with elective reoperation in 94.6%. Cardiac injury was graded into five groups and the incidence and reasons for groin cannulation estimated. The morbidity and mortality as a result of the reoperation and resternotomy were assessed. Results: The hospital/30 day mortality was 2.9% (95% Cl: 1.6%-4.4%) (16 deaths) over the 21 years. First (481), second (53), and third (12) resternotomies produced 307 uncomplicated technical reopenings, 203 slower but uncomplicated procedures, 9 minor superficial cardiac lacerations, and no moderate or severe cardiac injuries. Direct vision resternotomy is crystalized into the principle that only adhesions that are visualized from below are divided and only sternal bone that is freed of adhesions is sewn. Groin exposure was never performed prophylactically for resternotomy. Fourteen patients (2.6%) had such cannulation for aortic dissection/aneurysm (9 patients), excessive sternal adherence of cardiac structures (3 patients), presurgery cardiac arrest (1 patient), and high aortic cannulation desired and not possible (1 patient). The average postop blood loss was 594 mL (95% CI:558-631) in the first 12 hours. The need to return to the operating room for control of excessive bleeding was 2% (11 patients). Blood transfusion was given in 65% of the resternotomy procedures over the 21 years (mean 854 mL 95% Cl 765-945 mL) and 41% over the last 5 years. Conclusions: The technique of direct vision resternotomy has been associated with zero moderate or major cardiac injury/catastrophic hemorrhage at reoperation. Few patients have required groin cannulation. In the postoperative period, there was acceptable blood loss, transfusion rates, reduced morbidity, and moderate low mortality for this potentially high risk group.
Resumo:
The chi-conopeptides MrIA and MrIB are 13-residue peptides with two disulfide bonds that inhibit human and rat norepinephrine transporter systems and are of significant interest for the design of novel drugs involved in pain treatment. In the current study we have determined the solution structure of MrIA using NMR spectroscopy. The major element of secondary structure is a hairpin with the two strands connected by an inverse gamma-turn. The residues primarily involved in activity have previously been shown to be located in the turn region (Sharpe, I. A.; Palant, E.: Schroder, C. L; Kaye, D. M.; Adams, D. I.; Alewood, P. F.; Lewis, R. J. J Biol Client 2003, 278, 40317-40323), which appears to be more flexible than the beta-strands based on disorder in the ensemble of calculated structures. Analogues of MrIA with N-terminal truncations indicate that the N-terminal residues play a role in defining a stable conformation and the native disulfide connectivity. In particular, noncovalent interactions between Val3 and Hypl2 are likely to be involved in maintaining a stable conformation. The N-terminus also affects activity, as a single N-terminal deletion introduced additional pharmacology at rat vas deferens, while deleting the first two amino acids reduced chi-conopeptide potency. This article was originally published online as an accepted preprint. The Published Online date corresponds to the preprint version. You can request a copy of the preprint by entailing the Biopolymers editorial office at biopolymers@wiley.com (c) 2005 Wiley Periodicals, Inc.