26 resultados para Data-driven Methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary objective: To trial the method of email-facilitated qualitative interviewing with people with traumatic brain injury (TBI). Research design: Qualitative semi-structured email-facilitated interviews. Procedures: Nineteen people (17 severe diagnosis) with a TBI participated in email interviews. Main outcomes and results: Findings indicate that this method facilitates the participation of people with TBI in qualitative interviews. Advantages include increased time for reflection, composing answers and greater control of the interview setting. In addition, the data indicates that people with a TBI are capable of greater insight, reflection and humour than indicated by previous research. Conclusion: Findings indicate that new technologies may advance data collection methods for people with cognitive-linguistic impairments who face participation barriers in face-to-face interviews.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Intervention time series analysis (ITSA) is an important method for analysing the effect of sudden events on time series data. ITSA methods are quasi-experimental in nature and the validity of modelling with these methods depends upon assumptions about the timing of the intervention and the response of the process to it. METHOD: This paper describes how to apply ITSA to analyse the impact of unplanned events on time series when the timing of the event is not accurately known, and so the problems of ITSA methods are magnified by uncertainty in the point of onset of the unplanned intervention. RESULTS: The methods are illustrated using the example of the Australian Heroin Shortage of 2001, which provided an opportunity to study the health and social consequences of an abrupt change in heroin availability in an environment of widespread harm reduction measures. CONCLUSION: Application of these methods enables valuable insights about the consequences of unplanned and poorly identified interventions while minimising the risk of spurious results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: There is scant data regarding methods to identify subjects in the community with preclinical left ventricular (LV) systolic and diastolic dysfunction. Methods: A population-based sample of 1229 older adults underwent examination with transthoracic echocardiography and measurement of circulating aminoterminal pro-Btype natriuretic peptide (N-BNP) levels. Heart failure status was ascertained according to past history and clinical examination. The ability of N-BNP to detect preclinical LV ejection fraction (EF)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Qualitative data analysis (QDA) is often a time-consuming and laborious process usually involving the management of large quantities of textual data. Recently developed computer programs offer great advances in the efficiency of the processes of QDA. In this paper we report on an innovative use of a combination of extant computer software technologies to further enhance and simplify QDA. Used in appropriate circumstances, we believe that this innovation greatly enhances the speed with which theoretical and descriptive ideas can be abstracted from rich, complex, and chaotic qualitative data. © 2001 Human Sciences Press, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many variables that are of interest in social science research are nominal variables with two or more categories, such as employment status, occupation, political preference, or self-reported health status. With longitudinal survey data it is possible to analyse the transitions of individuals between different employment states or occupations (for example). In the statistical literature, models for analysing categorical dependent variables with repeated observations belong to the family of models known as generalized linear mixed models (GLMMs). The specific GLMM for a dependent variable with three or more categories is the multinomial logit random effects model. For these models, the marginal distribution of the response does not have a closed form solution and hence numerical integration must be used to obtain maximum likelihood estimates for the model parameters. Techniques for implementing the numerical integration are available but are computationally intensive requiring a large amount of computer processing time that increases with the number of clusters (or individuals) in the data and are not always readily accessible to the practitioner in standard software. For the purposes of analysing categorical response data from a longitudinal social survey, there is clearly a need to evaluate the existing procedures for estimating multinomial logit random effects model in terms of accuracy, efficiency and computing time. The computational time will have significant implications as to the preferred approach by researchers. In this paper we evaluate statistical software procedures that utilise adaptive Gaussian quadrature and MCMC methods, with specific application to modeling employment status of women using a GLMM, over three waves of the HILDA survey.