74 resultados para Dairy products industry.


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solid phase microextraction (SPME) offers a solvent-free and less labour-intensive alternative to traditional flavour isolation techniques. In this instance, SPME was optimised for the extraction of 17 stale flavour volatiles (C3-11,13 methyl ketones and C4-10 saturated aldehydes) from the headspace of full-cream ultrahigh-temperature (UHT)-processed milk. A comparison of relative extraction efficiencies was made using three fibre coatings, three extraction times and three extraction temperatures. Linearity of calibration curves, limits of detection and repeatability (coefficients of variation) were also used in determining the optimum extraction conditions. A 2 cm fibre coating of 50130 gm divinylbenzene/Carboxen/polydimethylsiloxane in conjunction with a 15 min extraction at 40 degrees C were chosen as the final optimum conditions. This method can be used as an objective tool for monitoring the flavour quality of UHT milk during storage. (c) 2005 Society of Chemical Industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stickiness is a common problem encountered in food handling and processing, and also during consumption. Stickiness is observed as adhesion of the food to processing equipment surfaces or cohesion within the food particulate or mass. An important operation where this undesirable behavior of food is manifested is drying. This occurs particularly during drying of high-sugar and high-fat foods. To date, the stickiness of foods during drying or dried powder has been investigated in relation to their viscous and glass transition properties. The importance of contact surface energy of the equipment has been ignored in many analyses, despite the fact that some drying operations have reported using low-energy contact surfaces in drying equipment to avoid the problems caused by stickiness. This review discusses the fundamentals of adhesion and cohesion mechanisms and relates these phenomena to drying and dried products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methyl ketones, aldehydes and free saturated fatty acids were measured in the headspace of samples of two indirectly processed and two directly processed Australian commercial UHT milks during room temperature storage for 16 weeks. The analytes were isolated using headspace solid phase microextraction and analysed by gas chromatography coupled with flame ionisation detection. All methyl ketones and aldehydes increased during storage, With free saturated fatty acids exhibiting little change. On average, the total methyl ketone and aldehyde concentrations in the indirectly processed UHT milks were higher than those in the directly processed samples. A strong correlation was found between the concentration of methyl ketones and various heat indices (furosine, lactulose and undenatured whey proteins) in the milk samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bovine milk contains a lipoprotein lipase that accounts for most, if not all, of its lipolytic activity. The total lipase activity in raw milk is sufficient to cause rapid hydrolysis of a large proportion of the fat. However, in reality this does not happen, because the lipase is prevented from accessing the fat by the milkfat globule membrane. Physical damage to this membrane in raw milk initiates lipolysis. Furthermore, simply cooling certain individual milks soon after secretion can initiate the so-called spontaneous lipolysis. The biochemical basis of spontaneous lipolysis is still poorly understood, but it appears to be related to a balance between activating and inhibiting factors in the milk. Lipolysis in milk and milk products causes rancid off-flavours and other problems, and is a constant concern in the dairy industry. A thorough understanding of the mechanism of lipolysis and constant vigilance by operatives is required to minimize lipase-related problems. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proteome of bovine milk is dominated by just six gene products that constitute approximately 95% of milk protein. Nonetheless, over 150 protein spots can be readily detected following two-dimensional electrophoresis of whole milk. Many of these represent isoforms of the major gene products produced through extensive posttranslational modification. Peptide mass fingerprinting of in-gel tryptic digests (using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) in reflectron mode with alpha-cyano-4-hydroxycinnamic acid as the matrix) identified 10 forms of K-casein with isoelectric point (pl) values from 4.47 to 5.81, but could not distinguish between them. MALDI-TOF MS in linear mode, using sinapinic acid as the matrix, revealed a large tryptic peptide (mass > 5990 Da) derived from the C-terminus that contained all the known sites of genetic variance, phosphorylation and glycosylation. Two genetic variants present as singly or doubly phosphorylated forms could be distinguished using mass data alone. Glycoforms containing a single acidic tetrasaccharide were also identified. The differences in electrophoretic mobility of these isoforms were consistent with the addition of the acidic groups. While more extensively glycosylated forms were also observed, substantial loss of N-acetylneuraminic acid from the glycosyl group was evident in the MALDI spectra such that ions corresponding to the intact glycopeptide were not observed and assignment of the glycoforms was not possible. However, by analysing the pl shifts observed on the two-dimensional gels in conjunction with the MS data, the number of N-acetylneuraminic acid residues, and hence the glycoforms present, could be determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.