17 resultados para DISTRACTION OSTEOGENESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. The driving environment is becoming increasingly complex, including both visual and auditory distractions within the in- vehicle and external driving environments. This study was designed to investigate the effect of visual and auditory distractions on a performance measure that has been shown to be related to driving safety, the useful field of view. METHODS. A laboratory study recorded the useful field of view in 28 young visually normal adults (mean 22.6 +/- 2.2 years). The useful field of view was measured in the presence and absence of visual distracters (of the same angular subtense as the target) and with three levels of auditory distraction (none, listening only, listening and responding). RESULTS. Central errors increased significantly (P < 0.05) in the presence of auditory but not visual distracters, while peripheral errors increased in the presence of both visual and auditory distracters. Peripheral errors increased with eccentricity and were greatest in the inferior region in the presence of distracters. CONCLUSIONS. Visual and auditory distracters reduce the extent of the useful field of view, and these effects are exacerbated in inferior and peripheral locations. This result has significant ramifications for road safety in an increasingly complex in-vehicle and driving environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes an architecture for pervasive computing which utilizes context information to provide adaptations based on vertical handovers (handovers between heterogeneous networks) while supporting application Quality of Service (QoS). The future of mobile computing will see an increase in ubiquitous network connectivity which allows users to roam freely between heterogeneous networks. One of the requirements for pervasive computing is to adapt computing applications or their environment if current applications can no longer be provided with the requested QoS. One of possible adaptations is a vertical handover to a different network. Vertical handover operations include changing network interfaces on a single device or changes between different devices. Such handovers should be performed with minimal user distraction and minimal violation of communication QoS for user applications. The solution utilises context information regarding user devices, user location, application requirements, and network environment. The paper shows how vertical handover adaptations are incorporated into the whole infrastructure of a pervasive system