57 resultados para Cyclin A2


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to derive mice which expressed both the E7 open reading frame transgene of human papillomavirus type 16 in skin and MHC class 1 restriction elements for several E7-encoded cytotoxic T-lymphocyte (CTL) epitopes, K14.HPV16E7 mice which express E7 in basal keratinocytes were crossed to the F1 generation with A2.1 K-b transgenic mice which express the MHC binding cleft domains of human HLA A*0201, and murine H-2(b). F1 mice (denoted K14E7xA2.1) expressed E7 in the thymus at least as early as 2-5 days before birth. Immunisation of FVBxA2.1 control mice (transgenic for HLA A*0201 and H-2(b) but not for E7), with two HLA A*0201-restricted epitopes of E7 and one H-2(b)-restricted CTL epitope of E7, gave strong primary CTL responses recognising epitope-pulsed or constitutively E7-expressing syngeneic target cells. In contrast, in immunised K14E7xA2.1 mice, the CTL responses to the H-2(b) epitope and one of the HLA A*0201 CTL epitopes were strongly down-regulated, and to the other HLA A*0201 epitope, completely abolished, as demonstrated by percentage specific killing by bulk splenocyte cultures in cyrotoxicity assays, and by CTL precursor frequency analysis, In thymus-transplanted bone marrow radiation chimeras in which the immune system of K14E7xA2.1 mice was replaced by a FVBxA2.1 immune system, specific immunisation did not result in reemergence of strong E7-directed CTL responses. In agreement with these in vitro findings, specific immunisation failed to significantly alter the course of E7-associated tumour development in K14E7xA2.1 mice. These data are consistent with a model of central deletional CTL tolerance to E7-encoded epitopes recognised in the context of two distinct MHC class 1 restriction elements, and with the possibility of peripheral T-cell anergy maintained by expression of E7 in the skin. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A marker database was compiled for isolates of the potato and tomato late blight pathogen, Phytophthora infestans, originating from 41 locations which include 31 countries plus 10 regions within Mexico. Presently, the database contains information on 1,776 isolates for one or more of the following markers: restriction fragment length polymorphism (RFLP) fingerprint consisting of 23 bands; mating type; dilocus allozyme genotype; mitochondrial DNA haplotype; sensitivity to the fungicide metalaxyl; and virulence. In the database, 305 entries have unique RFLP fingerprints and 258 entries have unique multilocus genotypes based on RFLP fingerprint, dilocus allozyme genotype, and mating type. A nomenclature is described for naming multilocus genotypes based on the International Organization for Standardization (ISO) two-letter country code and a unique number, Forty-two previously published multilocus genotypes are represented in the database with references to publications. As a result of compilation of the database, seven new genotypes were identified and named. Cluster analysis of genotypes from clonally propagated populations worldwide generally confirmed a previously published classification of old and new genotypes. Genotypes from geographically distant countries were frequently clustered, and several old and new genotypes were found in two or more distant countries. The cluster analysis also demonstrated that A2 genotypes from Argentina differed from all others. The database is available via the Internet, and thus can serve as a resource for Phytophthora workers worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytophthora cinnamomi isolates collected from 1977 to 1986 and 1991 to 1993 in two regions in South Africa were analyzed using isozymes. A total of 135 isolates was analyzed for 14 enzymes representing 20 putative loci, of which four were polymorphic. This led to the identification of nine different multilocus isozyme genotypes. Both mating types of P. cinnamomi occurred commonly in the Cape region, whereas, predominantly, the A2 mating type occurred in the Mpumalanga region of South Africa. A2 mating type isolates could be resolved into seven multilocus isozyme genotypes, compared with only two multilocus isozyme genotypes for the A1 mating type isolates. Low levels of gene (0.115) and genotypic (2.4%) diversity and a low number of alleles per locus (1.43) were observed for the South African P. cinnamomi population. The genetic distance between the Cape and Mpumalanga P. cinnamomi populations was relatively low (D-m = 0.165), and no specific pattern in regional distribution of multilocus isozyme genotypes could be observed. The genetic distance between the ''old'' (isolated between 1977 and 1986) and ''new'' (isolated between 1991 and 1993) P. cinnamomi populations from the Cape was low (D-m = 0.164), indicating a stable population over time. Three of the nine multilocus isozyme genotypes were specific to the ''old'' population, and only one multilocus isozyme genotype was specific to the ''new'' population. Significant differences in allele frequencies, a high genetic distance (D-m = 0.581) between the Cape A1 and A2 mating type isolates, significant deviations from Hardy-Weinberg equilibrium, a low overall level of heterozygosity, and a high fixation index (0.71) all indicate that sexual reproduction occurs rarely, if at all, in the South African P. cinnamomi population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sporadic colorectal cancer (CRC) characterized by high-level DNA microsatellite instability (MSI-H) has a favorable prognosis. The reason for this MSI-H survival advantage is not known. The aim of this study was to correlate proliferation, apoptosis, and prognosis in CRC stratified by MSI status. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody in a selected series of 100 sporadic colorectal cancers classified according to the level of MSI as 31 MSI-H, 29 MSI-Low (MSI-L), and 40 microsatellite stable (MISS). The Ki-67 index was significantly higher in MSI-H cancers (P < 0.0001) in which the PI was 90.1 1.2% (mean +/- SE) compared with 69.5 +/- 3.1 % and 69.5 +/- 2.3 % in MSI-L and MSS subgroups, respectively. There was a positive linear correlation between the apoptotic index (AI) and PI (r = 0.51; P < 0.001), with MSI-H cancers demonstrating an increased AI:PI ratio indicative of a lower index of cell production. A high PI showed a trend toward predicting improved survival within MSI-H cancers (P = 0.09) but did not predict survival in MSI-L or MSS cancers. The Al was not associated with survival in any MSI subgroup. In conclusion, this is the first study to show that sporadic MSI-H cancers are characterized by a higher AL:PI ratio and increased proliferative activity compared with MSI-L and MSS cancers, and that an elevated PI may confer a survival advantage within the MSI-H subset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the G2 phase cell cycle checkpoint arrest, the cdc25-dependent activation of cyclin B/cdc2, a critical step in regulating entry into mitosis, is blocked. Studies in yeast have demonstrated that the inhibition of cdc25 function involves 14-3-3 binding to cdc25, In humans, two cdc25 isoforms have roles in G2/M progression, cdc25B and cdc25C, both bind 14-3-3, Abrogating 14-3-3 binding to cdc25C attenuates the G2 checkpoint arrest, but the contribution of 14-3-3 binding to the regulation of cdc25B function is unknown. Here we demonstrate that high level over-expression of cdc25B in G2 checkpoint arrested cells can activate cyclin B/cdc2 and overcome the checkpoint arrest. Mutation of the major 14-3-3 binding site, S323, or removal of the N-terminal regulatory domain are strong activating mutations, increasing the efficiency with which the mutant forms of cdc25B not only overcome the arrest, but also initiate aberrant mitosis, We also demonstrate that 14-3-3 binding to the S323 site on cdc25B blocks access of the substrate cyclin/cdks to the catalytic site of the enzyme, thereby directly inhibiting the activity of cdc25B, This provides direct mechanistic evidence that 14-3-3 binding to cdc25B can regulate its activity, thereby controlling progression into mitosis.