25 resultados para Critical exponents and amplitudes (theory)
Resumo:
We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.
Resumo:
We present existence results for a Neumann problem involving critical Sobolev nonlinearities both on the right hand side of the equation and at the boundary condition.. Positive solutions are obtained through constrained minimization on the Nehari manifold. Our approach is based on the concentration 'compactness principle of P. L. Lions and M. Struwe.
Resumo:
Cognitive complexity and control theory and relational complexity theory attribute developmental changes in theory of mind (TOM) to complexity. In 3 studies, 3-, 4-, and 5-year-olds performed TOM tasks (false belief, appearance-reality), less complex connections (Level 1 perspective-taking) tasks, and transformations tasks (understanding the effects of location changes and colored filters) with content similar to TOM. There were also predictor tasks at binary-relational and ternary-relational complexity levels, with different content. Consistent with complexity theories: (a) connections and transformations were easier and mastered earlier than TOM; (b) predictor tasks accounted for more than 80% of age-related variance in TOM; and (c) ternary-relational items accounted for TOM variance, before and after controlling for age and binary-relational items. Prediction did not require hierarchically structured predictor tasks.
Resumo:
In this note we first introduce balanced critical sets and near balanced critical sets in Latin squares. Then we prove that there exist balanced critical sets in the back circulant Latin squares of order 3n for n even. Using this result we decompose the back circulant Latin squares of order 3n, n even, into three isotopic and disjoint balanced critical sets each of size 3n. We also find near balanced critical sets in the back circulant Latin squares of order 3n for n odd. Finally, we examine representatives of each main class of Latin squares of order up to six in order to determine which main classes contain balanced or near balanced critical sets.
Resumo:
A critical set in a Latin square of order n is a set of entries from the square which can be embedded in precisely one Latin square of order n, Such that if any element of the critical set. is deleted, the remaining set can be embedded, in more than one Latin square of order n.. In this paper we find all the critical sets of different sizes in the Latin squares of order at most six. We count the number of main and isotopy classes of these critical sets and classify critical sets from the main classes into various strengths. Some observations are made about the relationship between the numbers of classes, particularly in the 6 x 6 case. Finally some examples are given of each type of critical set.
Resumo:
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. (c) 2005 American Institute of Physics.
Resumo:
We investigate the critical behavior of the spectral weight of a single quasiparticle, one of the key observables in experiment, for the particular case of the transverse Ising model. Series expansions are calculated for the linear chain and the square and simple cubic lattices. For the chain model, a conjectured exact result is discovered. For the square and simple cubic lattices, series analyses are used to estimate the critical exponents. The results agree with the general predictions of Sachdev [Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)].
Resumo:
The practice of career counseling has been derived from principles of career theory and counseling theory. In recent times, the fields of both career and counseling theory have undergone considerable change. This article details the move toward convergence in career theory, and the subsequent development of the Systems Theory Framework in this domain. The importance of this development to connecting theory and practice in the field of career counseling is discussed.