56 resultados para Cristalización de roles
Resumo:
The aim was to investigate the roles of transmembrane domain 2 and the adjacent region of the first intracellular loop in determining human noradrenaline transporter (hNET) function by pharmacological and substituted-cysteine accessibility method (SCAM) analyses. It was first necessary to establish a suitable background NET for SCAM. Alanine mutants of endogenous hNET cysteines, hC86A, hC131A and hC339A, were examined and showed no marked effects on expression or function. hNET and the mutants were also resistant to methanethiosulfonate (MTS), ethylammonium (MTSEA) and MTStrimethylammonium (MTSET). Hence, wild-type hNET is an appropriate background for production of cysteine mutants for SCAM. Pharmacological investigation showed that all mutants except hT99C and hL109C showed reduced cell-surface expression, while all except hM107C showed a reduction in functional activity. The mutations did not markedly affect the apparent affinities of substrates, but apparent affinities of cocaine were decreased 7-fold for hP97C and 10-fold for hF101C and increased 12-fold for hY98C. [H-3]Nisoxetine binding affinities were decreased 13-fold for hP97C and 5-fold for hF101C. SCAM analysis revealed that only hL102C was sensitive to 1.25 mM MTSEA, and this sensitivity was protected by noradrenaline, nisoxetine and cocaine. The results suggest that this region of hNET is important for interactions with antidepressants and cocaine, but it is probably not involved in substrate translocation mechanisms.
Resumo:
Overexpression of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2 and B1 has been observed in a variety of tumour types, however, it is unknown whether this dysregulation is a consequence of, or a driving force for, unregulated cell proliferation. We have shown that the levels of hnRNPs A1, A2 and B1, but not A3, are modulated during the cell cycle of Colo16 squamous carcinoma cells and HaCaT immortalized keratinocytes, suggesting that A1, A2 and B1 are needed at particular cell cycle stages. However, the levels of hnRNP A1, A2 and B1 mRNAs were constant, indicating that regulation of protein levels was controlled at the level of translation. RNAi suppression of hnRNP At or A3 alone did not affect the proliferation of Colo16 cells but the proliferation rate was significantly reduced when both were suppressed simultaneously, or when either was suppressed together with hnRNP A2. Reducing hnRNP A2 expression in Colo16 and HaCaT cells by RNAi led to a non-apoptotic-related decrease in cell proliferation, reinforcing the view that this protein is required for cell proliferation. Suppression of hnRNP A2 in Colo16 cells was associated with increased p21 levels but p53 levels remained unchanged. In addition, expression of BRCA1 was downregulated, at both mRNA and protein levels. The observed effects of hnRNP A2 and its isoforms on cell proliferation and their correlation with BRCA1 and p21 expression suggest that these hnRNP proteins play a role in cell proliferation.
Resumo:
H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopallmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cbolesterol-dependent and cholesterol-independent microdomains. In contrast, monopallmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-pahnitate is weaker. Thus, membrane affinity of a pallmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopahnitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.
Resumo:
The mechanisms for progressive fibrosis and exacerbation by steatosis in patients with chronic hepatitis C (HCV) are still unknown. We hypothesized that proliferative blockade in HCV-infected and steatotic hepatocytes results in the default activation of hepatic progenitor cells (HPC), capable of differentiating into both biliary and hepatocyte lineages, and that the resultant ductular reaction promotes portal fibrosis. To study this concept, 115 liver biopsy specimens from subjects with HCV were scored for steatosis, inflammation, and fibrosis. Biliary epithelium and HPC were decorated by cytokeratin 7 immunoperoxidase, and the replicative state of hepatocytes was assessed by p21 and Ki-67 immunohistochemistry. A ductular reaction at the portal interface was common. There was a highly significant correlation between the area of ductular reaction and fibrosis stage (r = 0.453, P < .0001), which remained independently associated after multivariate analysis. HPC numbers also correlated with fibrosis (r = 0.544, P < .0001) and the ductular area (r = 0.624, P < .0001). Moreover, steatosis correlated with greater HPC proliferation (r = 0.372, P = .0004) and ductular reaction (r = 0.374, P < .0001) but was not an obligate feature. Impaired hepatocyte replication by p21 expression was independently associated with HPC expansion (P = .002) and increased with the body mass index (P < .001) and lobular inflammation (P = .005). In conclusion, the strong correlation between portal fibrosis and a periportal ductular reaction with HPC expansion, the exacerbation by steatosis, and the associations with impaired hepatocyte replication suggest that an altered regeneration pathway drives the ductular reaction. We believe this triggers fibrosis at the portal tract interface. This may be a stereotyped response of importance in other chronic liver diseases.
Resumo:
We lack a thorough conceptual and functional understanding of fine roots. Studies that have focused on estimating the quantity of fine roots provide evidence that they dominate overall plant root length. We need a standard procedure to quantify root length/biomass that takes proper account of fine roots. Here we investigated the extent to which root length/biomass may be underestimated using conventional methodology, and examined the technical reasons that could explain such underestimation. Our discussion is based on original X-ray-based measurements and on a literature review spanning more than six decades. We present evidence that root-length recovery depends strongly on the observation scale/spatial resolution at which measurements are carried out; and that observation scales/resolutions adequate for fine root detection have an adverse impact on the processing times required to obtain precise estimates. We conclude that fine roots are the major component of root systems of most (if not all) annual and perennial plants. Hence plant root systems could be much longer, and probably include more biomass, than is widely accepted.
Resumo:
In comments on G. MacDonald and M. R. Leary (2005), J. Panksepp (2005) argued for more emphasis on social pain mechanisms, whereas P. J. Corr (2005) argued for more emphasis on physical defense mechanisms. In response to the former, the authors clarify their positions on the topics of anger, the usefulness of rat models, the role of analgesic mechanisms, and basic motivational processes. In response to the latter, the authors clarify their positions on the topics of the relation of social exclusion to fear, the value of the pain affect construct, and the nature of the social pain experience. The authors conclude that consideration of the roles of both social pain and defense mechanisms is essential to best understand human response to social exclusion.
Resumo:
Cell-mediated immunity is important for anti-Candida host defence in mucosal tissues. In this study we used cytokine-specific gene knockout mice to investigate the requirement for T helper type 1 (Th1) and Th2 cytokines in recovery from oral candidiasis. Knockout mice used in this study included interleukin-4 (IL-4), IL-10, IL-12p40, interferon-gamma (IFN-gamma), and tumour necrosis factor (TNF). The mice were challenged either orally or systemically with Candida albicans yeasts, and levels of colonization were determined. IL-12p40 knockout mice developed chronic oropharyngeal candidiasis, but were not more susceptible to systemic challenge. On the other hand, TNF knockout mice displayed increased susceptibility to both oral and systemic challenge, but only in the acute stages of infection. TNF apparently has a protective effect in the acute stages of both oral and systemic candidiasis, whereas IL-12p40 is essential for recovery from oral but not systemic candidiasis. The role of IL-12p40, and its relation to T-cell-mediated responses remain to be determined.
Resumo:
CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Sox7, Sox17 and Sox18 constitute group F of the Sox family of HMG box transcription factor genes. Dominant-negative mutations in Sox18 underlie the cardiovascular defects observed in ragged mutant mice. By contrast, Sox18(-/-) mice are viable and fertile, and display no appreciable anomaly in their vasculature, suggesting functional compensation by the two other SoxF genes. Here, we provide direct evidence for redundant function of Sox17 and Sox18 in postnatal neovascularization by generating Sox17(+/-)-Sox18(-/-) double mutant mice. Whereas Sox18(-/-) and Sox17(+/-)-Sox18(+/)-mice showed no vascular defects, approximately half of the Sox17(+/-)-Sox18(-/-) pups died before postnatal day 21 (P21). They showed reduced neovascularization in the liver sinusoids and kidney outer medulla vasa recta at P7, which most likely caused the ischemic necrosis observed by P14 in hepatocytes and renal tubular epithelia. Those that survived to adulthood showed similar, but milder, vascular anomalies in both liver and kidney, and females were infertile with varying degrees of vascular abnormalities in the reproductive organs. These anomalies corresponded with sites of expression of Sox7 and Sox17 in the developing postnatal vasculature. In vitro angiogenesis assays, using primary endothelial cells isolated from the P7 livers, showed that the Sox17(+/-)-Sox18(-/-)endothelial cells were defective in endothelial sprouting and remodeling of the vasculature in a phenotype-dependent manner. Therefore, our findings indicate that Sox17 and Sox18, and possibly all three SoxF genes, are cooperatively involved in mammalian vascular development.
Resumo:
Previous research measuring various biosocial factors such as age, sex, and marital status has found them to be essentially unrelated to measures of psychological health. Recent empirical studies have revealed that personality constructs may be more significant than demographic variables in the prediction of psychological well-being. The present study assessed the personality constructs of masculinity and femininity and hypothesized that the Gender-Masculine ( GM) scale of the MMPI-2 would be more effective than the Gender-Feminine (GF) scale in predicting psychological well-being. This hypothesis stems from previous research that has indicated the dominance of the masculinity model. It is suggested that previous research supporting androgyny as a primary indicator of well-being was influenced by the masculinity component of this gender orientation. One hundred and seventy-seven psychiatric patients from Australia (N = 107) and Singapore ( N 5 70) completed the MMPI-2. Hierarchical multiple regression revealed significantly stronger masculinity effects, with significance achieved on measures of ego strength and low self-esteem. No significant relationship between psychological well-being and the GF variable was found. Similarly, androgyny did not add any further variance to the model when masculinity was controlled for. Overall, the results are consistent with an interpretation that GM is a better correlate of psychological well-being as compared to the GF scale.
Resumo:
Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.