19 resultados para Copper mines and mining
Resumo:
A concept has been developed where characteristic load cycles of longwall shields can describe most of the interaction between a longwall support and the roof. A characteristic load cycle is the change in support pressure with time from setting the support against the roof to the next release and movement of the support. The concept has been validated through the back-analysis of more than 500 000 individual load cycles in five longwall panels at four mines and seven geotechnical domains. The validation process depended upon the development of new software capable of both handling the large quantity of data emanating from a modern longwall and accurately delineating load cycles. Existing software was found not to be capable of delineating load cycles to a sufficient accuracy. Load-cycle analysis can now be used quantitatively to assess the adequacy of support capacity and the appropriateness of set pressure for the conditions under which a longwall is being operated. When linked to a description of geotechnical conditions, this has allowed the development of a database for support selection for greenfield sites. For existing sites, the load-cycle characteristic concept allows for a diagnosis of strata-support problem areas, enabling changes to be made to set pressure and mining strategies to manage better, or avoid, strata control problems. With further development of the software, there is the prospect of developing a system that is able to respond to changes in strata-support interaction in real time.
Resumo:
Oil shale processing produces an aqueous wastewater stream known as retort water. The fate of the organic content of retort water from the Stuart oil shale project (Gladstone, Queensland) is examined in a proposed packed bed treatment system consisting of a 1:1 mixture of residual shale from the retorting process and mining overburden. The retort water had a neutral pH and an average unfiltered TOC of 2,900 mg l(-1). The inorganic composition of the retort water was dominated by NH4+. Only 40% of the total organic carbon (TOC) in the retort water was identifiable, and this was dominated by carboxylic acids. In addition to monitoring influent and effluent TOC concentrations, CO2 evolution was monitored on line by continuous measurements of headspace concentrations and air flow rates. The column was run for 64 days before it blocked and was dismantled for analysis. Over 98% of the TOC was removed from the retort water. Respirometry measurements were confounded by CO2 production from inorganic sources. Based on predictions with the chemical equilibrium package PHREEQE, approximately 15% of the total CO2 production arose from the reaction of NH4+ with carbonates. The balance of the CO2 production accounted for at least 80% of the carbon removed from the retort water. Direct measurements of solid organic carbon showed that approximately 20% of the influent carbon was held-up in the top 20cm of the column. Less than 20% of this held-up carbon was present as either biomass or as adsorbed species. Therefore, the column was ultimately blocked by either extracellular polymeric substances or by a sludge that had precipitated out of the retort water.
Resumo:
"Wills' Mineral Processing Technology" provides practising engineers and students of mineral processing, metallurgy and mining with a review of all of the common ore-processing techniques utilized in modern processing installations. Now in its Seventh Edition, this renowned book is a standard reference for the mineral processing industry. Chapters deal with each of the major processing techniques, and coverage includes the latest technical developments in the processing of increasingly complex refractory ores, new equipment and process routes. This new edition has been prepared by the prestigious J K Minerals Research Centre of Australia, which contributes its world-class expertise and ensures that this will continue to be the book of choice for professionals and students in this field. This latest edition highlights the developments and the challenges facing the mineral processor, particularly with regard to the environmental problems posed in improving the efficiency of the existing processes and also in dealing with the waste created. The work is fully indexed and referenced. -The classic mineral processing text, revised and updated by a prestigious new team -Provides a clear exposition of the principles and practice of mineral processing, with examples taken from practice -Covers the latest technological developments and highlights the challenges facing the mineral processor -New sections on environmental problems, improving the efficiency of existing processes and dealing with waste.