24 resultados para Constrained Optimization


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. Methods: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; (V)over dot O-2peak = 64.5 +/- 5.2 mL.kg(-1).min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption ((V)over dotO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T-max) at their (V)over dotO(2peak) power output (P-max), as well as 3) a 40-kin time-trial (TT40). Subjects were matched and assigned to one of four training groups (G(1), N = 8, 8 X 60% T-max P-max, 1:2 work:recovery ratio; G(2), N = 9, 8 X 60% T-max at P-max, recovery at 65% HRmax; G(3), N = 10, 12 X 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1) G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. Results: All HIT groups improved TT40 performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to + 1.1 %; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their (V)over dot O-2peak significantly more than G(CON) (+ 1.0%; P < 0.05). Conclusion: The present study has shown that when HIT incorporates P-max as the interval intensity and 60% of T-max as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-strand conformation is unknown for short peptides in aqueous solution, yet it is a fundamental building block in proteins and the crucial recognition motif for proteolytic enzymes that enable formation and turnover of all proteins. To create a generalized scaffold as a peptidomimetic that is preorganized in a beta-strand, we individually synthesized a series of 15-22-membered macrocyclic analogues of tripeptides and analyzed their structures. Each cycle is highly constrained by two trans amide bonds and a planar aromatic ring with a short nonpeptidic linker between them. A measure of this ring strain is the restricted rotation of the component tyrosinyl aromatic ring (DeltaG(rot) 76.7 kJ mol(-1) (16-membered ring), 46.1 kJ mol(-1) (17-membered ring)) evidenced by variable temperature proton NMR spectra (DMF-d(7), 200-400 K). Unusually large amide coupling constants ((3)J(NH-CHalpha) 9-10 Hz) corresponding to large dihedral angles were detected in both protic and aprotic solvents for these macrocycles, consistent with a high degree of structure in solution. The temperature dependence of all amide NH chemical shifts (Deltadelta/T7-12 ppb/deg) precluded the presence of transannular hydrogen bonds that define alternative turn structures. Whereas similar sized conventional cyclic peptides usually exist in solution as an equilibrium mixture of multiple conformers, these macrocycles adopt a well-defined beta-strand structure even in water as revealed by 2-D NMR spectral data and by a structure calculation for the smallest (15-membered) and most constrained macrocycle. Macrocycles that are sufficiently constrained to exclusively adopt a beta-strand-mimicking structure in water may be useful pre-organized and generic templates for the design of compounds that interfere with beta-strand recognition in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[GRAPHICS] The regioselective syntheses and structures are reported for two tris-macrocylic compounds, each possessing two antiparallel loops on a macrocyclic scaffold constrained by two oxazoles and two thiazoles. NMR solution structures show the loops projecting from the same face of the macrocycle. Such molecules are shown to be prototypes for mimicking multiple loops of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-I, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 mu M. Their activities against HIV-1 protease (K-i 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC50 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC50 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 Angstrom (1) and 1.85 Angstrom (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.