130 resultados para Computational methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules ( proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability ( area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets termed T-cell epitope hotspots. MULTIPRED is available at http:// antigen.i2r.a-star.edu.sg/ multipred/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many variables that are of interest in social science research are nominal variables with two or more categories, such as employment status, occupation, political preference, or self-reported health status. With longitudinal survey data it is possible to analyse the transitions of individuals between different employment states or occupations (for example). In the statistical literature, models for analysing categorical dependent variables with repeated observations belong to the family of models known as generalized linear mixed models (GLMMs). The specific GLMM for a dependent variable with three or more categories is the multinomial logit random effects model. For these models, the marginal distribution of the response does not have a closed form solution and hence numerical integration must be used to obtain maximum likelihood estimates for the model parameters. Techniques for implementing the numerical integration are available but are computationally intensive requiring a large amount of computer processing time that increases with the number of clusters (or individuals) in the data and are not always readily accessible to the practitioner in standard software. For the purposes of analysing categorical response data from a longitudinal social survey, there is clearly a need to evaluate the existing procedures for estimating multinomial logit random effects model in terms of accuracy, efficiency and computing time. The computational time will have significant implications as to the preferred approach by researchers. In this paper we evaluate statistical software procedures that utilise adaptive Gaussian quadrature and MCMC methods, with specific application to modeling employment status of women using a GLMM, over three waves of the HILDA survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a computational framework, based on Defeasible Logic, to capture some aspects of institutional agency. Our background is Kanger-Lindahl-P\"orn account of organised interaction, which describes this interaction within a multi-modal logical setting. This work focuses in particular on the notions of counts-as link and on those of attempt and of personal and direct action to realise states of affairs. We show how standard Defeasible Logic can be extended to represent these concepts: the resulting system preserves some basic properties commonly attributed to them. In addition, the framework enjoys nice computational properties, as it turns out that the extension of any theory can be computed in time linear to the size of the theory itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper critically assesses several loss allocation methods based on the type of competition each method promotes. This understanding assists in determining which method will promote more efficient network operations when implemented in deregulated electricity industries. The methods addressed in this paper include the pro rata [1], proportional sharing [2], loss formula [3], incremental [4], and a new method proposed by the authors of this paper, which is loop-based [5]. These methods are tested on a modified Nordic 32-bus network, where different case studies of different operating points are investigated. The varying results obtained for each allocation method at different operating points make it possible to distinguish methods that promote unhealthy competition from those that encourage better system operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.