66 resultados para Computational Geometry and Object Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract—This paper describes an electrical model of the ventricles incorporating real geometry and motion. Cardiac geometry and motion is obtained from segmentations of multipleslice MRI time sequences. A static heart model developed previously is deformed to match the observed geometry using a novel shape registration algorithm. The resulting electrocardiograms and body surface potential maps are compared to a static simulation in the resting heart. These results demonstrate that introducing motion into the cardiac model modifies the ECG during the T wave at peak contraction of the ventricles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant problem with currently suggested approaches for transforming between models in different languages is that the transformation is often described imprecisely, with the result that the overall transformation task may be imprecise, incomplete and inconsistent. This paper presents a formal metamodeling approach for transforming between UML and Object-Z. In the paper, the two languages are defined in terms of their formal metamodels, and a systematic transformation between the models is provided at the meta-level in terms of formal mapping functions. As a consequence, we can provide a precise, consistent and complete transformation between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.