21 resultados para Communications networks
Resumo:
This paper proposes an architecture for pervasive computing which utilizes context information to provide adaptations based on vertical handovers (handovers between heterogeneous networks) while supporting application Quality of Service (QoS). The future of mobile computing will see an increase in ubiquitous network connectivity which allows users to roam freely between heterogeneous networks. One of the requirements for pervasive computing is to adapt computing applications or their environment if current applications can no longer be provided with the requested QoS. One of possible adaptations is a vertical handover to a different network. Vertical handover operations include changing network interfaces on a single device or changes between different devices. Such handovers should be performed with minimal user distraction and minimal violation of communication QoS for user applications. The solution utilises context information regarding user devices, user location, application requirements, and network environment. The paper shows how vertical handover adaptations are incorporated into the whole infrastructure of a pervasive system
Resumo:
Genetic algorithms (GAs) are known to locate the global optimal solution provided sufficient population and/or generation is used. Practically, a near-optimal satisfactory result can be found by Gas with a limited number of generations. In wireless communications, the exhaustive searching approach is widely applied to many techniques, such as maximum likelihood decoding (MLD) and distance spectrum (DS) techniques. The complexity of the exhaustive searching approach in the MLD or the DS technique is exponential in the number of transmit antennas and the size of the signal constellation for the multiple-input multiple-output (MIMO) communication systems. If a large number of antennas and a large size of signal constellations, e.g. PSK and QAM, are employed in the MIMO systems, the exhaustive searching approach becomes impractical and time consuming. In this paper, the GAs are applied to the MLD and DS techniques to provide a near-optimal performance with a reduced computational complexity for the MIMO systems. Two different GA-based efficient searching approaches are proposed for the MLD and DS techniques, respectively. The first proposed approach is based on a GA with sharing function method, which is employed to locate the multiple solutions of the distance spectrum for the Space-time Trellis Coded Orthogonal Frequency Division Multiplexing (STTC-OFDM) systems. The second approach is the GA-based MLD that attempts to find the closest point to the transmitted signal. The proposed approach can return a satisfactory result with a good initial signal vector provided to the GA. Through simulation results, it is shown that the proposed GA-based efficient searching approaches can achieve near-optimal performance, but with a lower searching complexity comparing with the original MLD and DS techniques for the MIMO systems.
Resumo:
Boolean models of genetic regulatory networks (GRNs) have been shown to exhibit many of the characteristic dynamics of real GRNs, with gene expression patterns settling to point attractors or limit cycles, or displaying chaotic behaviour, depending upon the connectivity of the network and the relative proportions of excitatory and inhibitory interactions. This range of behaviours is only apparent, however, when the nodes of the GRN are updated synchronously, a biologically implausible state of affairs. In this paper we demonstrate that evolution can produce GRNs with interesting dynamics under an asynchronous update scheme. We use an Artificial Genome to generate networks which exhibit limit cycle dynamics when updated synchronously, but collapse to a point attractor when updated asynchronously. Using a hill climbing algorithm the networks are then evolved using a fitness function which rewards patterns of gene expression which revisit as many previously seen states as possible. The final networks exhibit “fuzzy limit cycle” dynamics when updated asynchronously.
Resumo:
Currently, wireless technology is revolutionizing the way we share information and communicate. The demands for mobility have made wireless technology the primary source for voice communication. Code-division multiple-access (CDMA) is a very popular spread spectrum application due to its claims of low transmission power, higher system capacity, ability to mitigate multipath fading and user interference. In that case, frequency-hopping code-division multiple access (FH-CDMA) has received considerable attention over the past few years. This technique will allow a better performance over a fading channel, message privacy, and immunity to narrowband interference. This paper addresses the characteristics of FH-CDMA in WPAN networks, with an emphasis on frequency-hopped Bluetooth systems. A performance evaluation of FH-CDMA is discussed and simulated. The analysis shows the interaction between the designed parameters and their effect on the network system. Most specifically, the FH-CDMA scheme provides frequency and temporal diversity to combat the effects of interference.