19 resultados para Colonization experiment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ergot, caused by Claviceps africana, has emerged as a serious threat to sorghum hybrid seed production worldwide. In the absence of gene-for-gene-based qualitative resistance in commercial cultivars, varieties with high pollen production that can escape ergot infection are preferred. Recent demonstration of differences in ergot susceptibility among male-sterile lines has indicated the presence of partial resistance. Using chitin-specific fluorescin-isothiocyanate-conjugated wheat germ agglutin and callose-specific aniline blue, this study investigated the process of sorghum ovary colonization by C. africana. Conidia germinated within 24 h after inoculation (a.i.); the pathogen was established in the ovary by 79 h a.i., and at least half of the ovary was converted into sphacelial tissue by 120 h a.i. Changes in fungal cell wall chitin content and strategic callose deposition in the host tissue were associated with penetration and invasion of the ovary. The rate of ovary colonization differed in three male-sterile lines that also differed in ergot susceptibility. This work demonstrates a possible histological basis for partial resistance in male-sterile sorghum lines that could lay the foundation for variety improvement through further breeding and selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein–Podolsky–Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincaré sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement.