26 resultados para Collagen -- metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friedreich ataxia (FA) Is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis. (C) 2002 by The American Society of Hematology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgens play an important role in regulating the central obesity that is a strong risk factor for cardiovascular disease and insulin resistance. This study confirms that androgen receptors are present in subcultured human preadipocytes, with androgen receptor gene expression and saturable specific dihydrotestosterone binding, dissociation constant 1.02 - 2.56 nM and maximal binding capacity 30.8 - 55.7 fmol/mg protein. There was an intrinsic regional difference in androgen receptor complement, with more androgen receptors in visceral than in subcutaneous preadipocytes. Dihydrotestosterone was metabolised by human preadipocytes, with more androstanediol produced by subcutaneous than visceral preadipocytes. While dihydrotestosterone metabolism was insufficient to explain the regional variation in androgen binding, both of these differences would reduce the androgen responsiveness of the subcutaneous preadipocytes compared with visceral preadipocytes. There were no gender differences in androgen binding or metabolism. While the direct effects of androgens on human PAS remain uncertain, these regional differences suggest that AR-mediated regulation of certain PA functions influences adipose tissue distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum. (Bone 30:386-392; 2002) (C) 2002 by Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 This study has administered pirfenidone (5-methyl-l-phenyl-2-[1H]-pyridone) or amiloride to attenuate the remodelling and associated functional changes, especially an increased cardiac stiffness, in DOCA-salt hypertensive rats. 2 In control rats, the elimination half-life of pirfenidone following a single intravenous dose of 200 mg kg(-1) was 37 min while oral bioavailability at this dose was 25.7%. Plasma pirfenidone concentrations in control rats averaged 1.9 +/- 0.1 mug ml(-1) over 24 It after 14 days' administration as a 0.4% mixture in food. 3 Pirfenidone (approximately 250-300 mg kg(-1) day(-1) as 0.4% in food) and amiloride (I mg kg-1 day(-1) sc) were administered for 2 weeks starting 2 weeks post-surgery. Pirfenidone but not amiloride attenuated ventricular hypertrophy (2.69 +/- 0.09, UNX 2.01 +/- 0.05. DOCA-salt 3.11 +/- 0.09 mg kg(-1) body wt) without lowering systolic blood pressure. 4 Collagen deposition was significantly increased in the interstitium after 2 weeks and further increased with scarring of the left ventricle after 4 weeks; pirfenidone and amiloride reversed the increases and prevented further increases. This accumulation of collagen was accompanied by an increase in diastolic stiffness constant; both amiloride and pirfenidone, reversed this increase. 5 Noradrenaline potency (positive chronotropy) was decreased in right atria (neg log EC50: control 6.92 +/- 0.06; DOCA-salt 6.64 +/- 0.08); pirfenidone but not amiloride reversed this change. Noradrenaline was a more potent vasoconstrictor in thoracic aortic rings (neg log EC50: control 6.91 +/- 0.10; DOCA-salt 7.90 +/- 0.07); pirfenidone treatment did not change noradrenaline potency. 6 Thus, pirfenidone and amiloride reverse and prevent cardiac remodelling and the increased cardiac stiffness without reversing the increased vascular responses to noradrenaline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [H-3]zeatin riboside ([H-3]ZR), a water-soluble blue dye or [H-3]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within I h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [H-3]ZR and of blue dye in the same bud position was increased 3- to 10-fold relative to intact plants, whereas content of [H-3]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [H-3]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [H-3]ZR injected at physiological concentrations. Within 1 h, 80-95% of [H-3]ZR was converted to other active CKs (mainly zeatin riboside-5'phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O-acetylZR, O-acetylZRMP and a compound correlated with sites of high CK-concentrations) and inactive catabolites (adenosine, adenine, 5'AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2002, an integrated basic science course was introduced into the Bachelor of Dental Sciences programme at the University of Queensland, Australia. Learning activities for the Metabolism and Nutrition unit within this integrated course included lectures, problem-based learning tutorials, computer-based self-directed learning exercises and practicals. To support student learning and assist students to develop the skills necessary to become lifelong learners, an extensive bank of formative assessment questions was set up using the commercially available package, WebCT®. Questions included short-answer, multiple-choice and extended matching questions. As significant staff time was involved in setting up the question database, the extent to which students used the formative assessment and their perceptions of its usefulness to their learning were evaluated to determine whether formative assessment should be extended to other units within the course. More than 90% of the class completed formative assessment tasks associated with learning activities scheduled in the first two weeks of the block, but this declined to less than 50% by the fourth and final week of the block. Patterns of usage of the formative assessment were also compared in students who scored in the top 10% for all assessment for the semester with those who scored in the lowest 10%. High-performing students accessed the Web-based formative assessment about twice as often as those who scored in the lowest band. However, marks for the formative assessment tests did not differ significantly between the two groups. In a questionnaire that was administered at the completion of the block, students rated the formative assessment highly, with 80% regarding it as being helpful for their learning. In conclusion, although substantial staff time was required to set up the question database, this appeared to be justified by the positive responses of the students.