108 resultados para Cells Growth


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and downregulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Spl decreased. A causal relationship was established between these:observations by demonstrating that upregulation of Spl DNA binding activity by granulocyte/ macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells ban be explained by induction of ATM protein and kinase activity with time post-irradiation, Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of the beta(3) integrin subunit in melanoma in situ has been found to correlate with tumor thickness, the ability to invade and metastasize, and poor prognosis. Transition from the radial growth phase (RGP) to the vertical growth phase (VGP) is a critical step in melanoma progression and survival and is distinguished by the expression of beta(3), integrin. The molecular pathways that operate in melanoma cells associated with invasion and metastasis were examined by ectopic induction of the beta(3), integrin subunit in RGP SBcl2 and WM1552C melanoma cells, which converts these cells to a VGP phenotype. We used cDNA representational difference analysis subtractive hybridization between beta(3)-Positive and -negative melanoma cells to assess gene expression profile changes accompanying RGP to VGP transition. Fourteen fragments from known genes including osteonectin (also known as SPARC and BM-40) were identified after three rounds of representational difference analysis. Induction of osteonectin was confirmed by Northern and Western blot analysis and immunohistochemistry and correlated in organotypic cultures with the beta(3)-induced progression from RGP to VGP melanoma. Expression of osteonectin was also associated with reduced adhesion to vitronectin, but not to fibronectin. Osteonectin expression was not blocked when melanoma cells were cultured with anti-alpha(v)beta(3) LM609 mAb, mitogen-activated protein kinase, or protein kinase C inhibitors, indicating that other signaling pathway(s) operate through a(v)beta(3) integrin during conversion from RGP to VGP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show here that nerve growth factor (NGF), the canonical neurotrophic factor, is synthesized and released by breast cancer cells. High levels of NGF transcript and protein were detected in breast cancer cells by reverse transcription-PCR, Western blotting, ELISA assay and immunohistochemistry. Conversely, NGF production could not be detected in normal breast epithelial cells at either the transcriptional or protein level. Confocal analysis indicated the presence of NGF within classical secretion vesicles. Breast cancer cell-produced NGF was biologically active, as demonstrated by its ability to induce the neuronal differentiation of embryonic neural precursor cells. Importantly, the constitutive growth of breast cancer cells was strongly inhibited by either NGF-neutralizing antibodies or K-252a, a pharmacological inhibitor of NGF receptor TrkA, indicating the existence of an NGF autocrine loop. Together, our data demonstrate the physiological relevance of NGF in breast cancer and its potential interest as a marker and therapeutic target.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of natural killer T (NKT) cells in the immune response to tumor cells has been largely unexplored. As a model of adoptive tumor immunotherapy, cells from the draining lymph nodes of mice immunized with a tumor-specific or irrelevant antigen were transferred to naive recipients with established tumor. Inhibition of early tumor growth (day 4) required the transfer of both CD8(+) and Jalpha18(+) (NKT) cells from immunized animals without regard to immunogen. In contrast, CD8(+) cells, but not Jalpha18(+) cells, were necessary for the inhibition of late tumor growth (day 8). Thus, the developing tumor changes in sensitivity to NKT-mediated events and the role for NKT cells cannot be replaced by the presence of tumor-specific cells during early tumor growth. This suggests that recruitment/activation of Jalpha18(+) NKT cells is an important consideration during the immune therapy of early stage tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hernatopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen 1, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (P13-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, P13-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that P13-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-30. Coordinate activation of ERK, P13-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.