67 resultados para Cell-Line MCF-7
Resumo:
Arsenic trioxide appears to be effective in the treatment of pro-myelocytic leukaemia. The substituted phenylarsen(III)oxides are highly polar, they have a high tendency to undergo oxidation to As (V) and to form oligomers, to prevent this we protected the As-(OH)2 group as cyclic dithiaarsanes. To increase the compound's biological stability and passive diffusion we conjugated the compound of interest with lipoamino acids (Laas). Alternatively, we further conjugated the dithiaarsane derivative with a carbohydrate to utilize active transport systems and to target compound. We investigated two novel glyco-lipid arsenicals (III) (compounds 9 and 11) for their ability to initiate MCF-7 breast cancer cell death and characterized the mechanism by which death was initiated. A significant decrease in MCF-7 cell proliferation was observed using 1 μM and 10 μM compound (11) and 10 μM of compound (9). Treatment with compound (11) triggered apoptosis of MFC-7 cells while compound (9) induced inhibition of cellular proliferation was not via rapid induction of apoptosis and more likely reflected necrosis and/ or alterations in the cell cycle. Differences in the anti-proliferative potency of the two compounds indicate that structural modifications influence effectiveness. © 2006 Bentham Science Publishers Ltd.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors involved in various metabolic diseases. In the liver, PPARα is involved in alcohol metabolism and may lead to the development of alcoholic fatty liver and other alcohol mediated liver injuries. PPARβ modulation by ethanol induces abnormal myelin production by oligodendrocytes. PPARα and PPARβ are PPAR isoforms expressed in the human breast cell lines. Epidemiological studies show a positive correlation between alcohol intake and breast cancer risk, however, the molecular mechanisms involved are unclear. We hypothesized that ethanol would affect the expression and transactivation of human PPAR isoforms in estrogen receptor (ER) positive and ER negative breast cancer cells. Using real time RT-PCR we looked at the transcription of PPAR isoforms in the presence of increasing concentrations of ethanol and saw isoform and time dependent specific effects. Gene reporter assays enabled us to ascertain the effects of ethanol on ligand-mediated activation of human PPARα and PPARβ at concentrations equivalent to both moderate and chronic alcohol consumption. Ethanol differentially blocked the ligand-mediated activation of both PPARα and PPARβ. Since PPARα and PPARβ are involved in the differentiation and proliferation of breast cancer cells, PPARs may be a possible mechanism involved in the effect of ethanol in breast cancer.
Resumo:
A continuous cell line, Aa23, was established from eggs of a strain of the Asian tiger mosquito, Aedes albopictus, naturally infected with the intracellular symbiont Wolbachia pipientis. The resulting cell line was shown to be persistently infected with the bacterial endosymbiont. Treatment with antibiotics cured the cells of the infection. In the course of establishing this cell line it was noticed that RFLPs in the PCR products of two Wolbachia genes from the parental mosquitoes were fixed in the infected cell line. This indicates that the mosquito host was naturally superinfected with different Wolbachia strains, whereas the infected cell line derived from these mosquitoes only contained one of the original Wolbachia strains. The development of anin vitroculture system for this fastidious microorganism should facilitate molecular analysis of the reproduction distorting phenotypes it induces in natural arthropod hosts.
Resumo:
The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with the unactivated estrogen receptor in mutually exclusive heterocomplexes and may differentially modulate receptor activity, We have recently shown that CyP40 and FKBP52 mRNA's are differentially elevated in breast carcinomas compared with normal breast tissue. Other studies suggest that such alterations ill the ratio of immunophilins might potentially influence steroid receptor function. Studies were therefore initiated to investigate the influence of estradiol on CyP40 and FKBP52 expression in MCF-7 breast cancer cells. Over a 24-h-treatment period with estradiol, CyP40 and FKBP52 mRNA expression was increased approximately five- and 14-fold, respectively. The corresponding protein levels were also elevated in comparison to controls. The antiestrogen, ICI 182,780, was an antagonist for CyP40 and FKBP52 mRNA induction. Cycloheximide treatment did not inhibit this increased immunophilin expression, suggesting that estradiol-mediated activation is independent off de novo protein synthesis. Treatment of MCF-7 cells with estradiol resulted in an increased half-life of both CyP40 and FKBP52 mRNA, as determined by actinomycin D studies. These results suggest that estradiol regulates CyP40 and FKBP52 mRNA expression through both transcriptional and posttranscriptional mechanisms. (C) 2001 Academic Press.
Resumo:
A proteomics approach was used to identify the proteins potentially implicated in the cellular response concomitant with elevated production levels of human growth hormone in a recombinant Chinese hamster ovary (CHO) cell line following exposure to 0.5 mM butyrate and 80 muM zinc sulphate in the production media. This involved incorporation of two-dimensional (2-D) gel electrophoresis and protein identification by a combination of N-terminal sequencing, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry, amino acid analysis and cross species database matching. From these identifications a CHO 2-D reference,map and annotated database have been established. Metabolic labelling and subsequent autoradiography showed the induction of a number of cellular proteins in response to the media additives butyrate and zinc sulphate. These were identified as GRP75, enolase and thioredoxin. The chaperone proteins GRP78, HSP90, GRP94 and HSP70 were not up-regulated under these conditions.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Chinese Hamster Ovary (CHO) cells are widely used for the large scale production of recombinant biopharmaceuticals. Growth of the CHO-K1 cell line has been demonstrated in serum-free medium containing insulin, transferrin and selenium. In an attempt to get autocrine growth in protein-free medium, DNA coding for insulin and transferrin production was transfected into CHO-K1 cells. Transferrin was expressed well, with clones secreting approximately 1000 ng/10(6)cells/24h. Insulin was poorly expressed, with rates peaking at 5 ng/10(6)cells/24h. Characterisation of the secreted insulin indicated that the CHO cells were incompletely processing the insulin molecule. Site-directed mutagenesis was used to introduce a furin (prohormone converting enzyme) recognition sequence into the insulin molecule, allowing the production of active insulin. However, the levels were still too low to support autocrine growth. Further investigations revealed insulin degrading activity (presumably due to the presence of insulin degrading enzymes) in the cytoplasm of CHO cells. To overcome these problems insulin-like growth factor I (instead of insulin) was transfected into the cells. IGF-1 was completely processed and expressed at rates greater than 500 ng/10(6)cells/24h. In this paper we report autonomous growth of the transfected CHO-K1 cell line expressing transferrin and IGF-1 in protein-free medium without the addition of exogenous growth factors. Growth rates and final cell densities of these cells were identical to that of the parent cell line CHO-K1 growing in insulin, transferrin, and selenium supplemented serum-free media.
Resumo:
SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.
Resumo:
SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.
Resumo:
A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P < 0.015) depending on fetal calf serum (FCS) concentration (16.5 h in 10% FCS and 26.5 h in 2% FCS). Cells constricted while in suspension but were shown to attach to the coverslip (or flask) and flatten rapidly, less than 1 h after seeding. To confirm the epithelial nature of the cells, protein was extracted and Western blot analysis was performed. Subsequent probing with primary and secondary antibodies (monoclonal anticytokeratin clone C-11 IgG1 and anti-mouse IgG) revealed two bands at 45 and 52 kDa (compared against a protein molecular weight marker) that correspond to primary type I keratin and major type II keratin, respectively, expressed in simple epithelial cells. The koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal toot for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.
Resumo:
Insect cell cultures have been extensively utilised for means of production for heterologous proteins and biopesticides. Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five(TM)) cell lines have been widely used for the production of recombinant proteins, thus metabolism of these cell lines have been investigated thoroughly over recent years. The Helicoverpa zea cell line has potential use for the production of a biopesticide, specifically the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV). The growth, virus production, nutrient consumption and waste production of this cell line was investigated under serum-free culture conditions, using SF900II and a low cost medium prototype (LCM). The cell growth ( growth rates and population doubling time) was comparable in SF900II and LCM, however, lower biomass and cell specific virus yields were obtained in LCM. H. zea cells showed a preference for asparagine over glutamine, similar to the High Five(TM) cells. Ammonia was accumulated to significantly high levels (16 mM) in SF900II, which is an asparagine and glutamine rich medium. However, given the absence of asparagine and glutamine in the medium ( LCM), H. zea cells adapted and grew well in the absence of these substrates and no accumulation of ammonia was observed. The adverse effect of ammonia on H. zea cells is unknown since good production of biologically active HaSNPV was achieved in the presence of high ammonia levels. H. zea cells showed a preference for maltose even given an abundance supply of free glucose. Accumulation of lactate was observed in H. zea cell cultures.