57 resultados para By-environment Interaction
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Seven years of multi-environment yield trials of navy bean (Phaseolus vulgaris L.) grown in Queensland were examined. As is common with plant breeding evaluation trials, test entries and locations varied between years. Grain yield data were analysed for each year using cluster and ordination analyses (pattern analyses). These methods facilitate descriptions of genotype performance across environments and the discrimination among genotypes provided by the environments. The observed trends for genotypic yield performance across environments were partly consistent with agronomic and disease reactions at specific environments and also partly explainable by breeding and selection history. In some cases, similarities in discrimination among environments were related to geographic proximity, in others management practices, and in others similarities occurred between geographically widely separated environments which differed in management practices. One location was identified as having atypical line discrimination. The analysis indicated that the number of test locations was below requirements for adequate representation of line x environment interaction. The pattern analyses methods used were an effective aid in describing the patterns in data for each year and illustrated the variations in adaptive patterns from year to year. The study has implications for assessing the number and location of test sites for plant breeding multi-environment trials, and for the understanding of genetic traits contributing to line x environment interactions.
Resumo:
Transpiration efficiency, W, the ratio of plant carbon produced to water transpired and carbon isotope discrimination of leaf dry matter, Delta(d)' were measured together on 30 lines of the C-4 species, Sorghum bicolor in the glasshouse and on eight lines grown in the field. In the glasshouse, the mean W observed was 4.9 mmol C mol(-1) H2O and the range was 0.8 mmol C mol(-1) H2O The mean Delta(d) was 3.0 parts per thousand and the observed range was 0.4 parts per thousand. In the field, the mean W was lower at 2.8 mmol C mol H2O and the mean Delta(d) was 4.6 parts per thousand. Significant positive correlations between W and Delta(d) were observed for plants grown in the glasshouse and in the field. The observed correlations were consistent with theory, opposite to those for C-4 species, and showed that variation in Delta(d) was an integrated measure of long-term variation in the ratio of intercellular to ambient CO2 partial pressure, p(i)/p(a). Detailed gas exchange measurements of carbon isotope discrimination during CO2 uptake, Delta(A) and p(i)/p(a) were made on leaves of eight S. bicolor lines. The observed relationship between Delta(A) and p(i)/p(a) was linear with a negative slope of 3.7 parts per thousand in Delta(A) for a unit change in p(i)/p(a). The slope of this linear relationship between Delta(A) and p(i)/p(a) in C-4 species is dependent on the leakiness of the CO2 concentrating mechanism of the C pathway, We estimated the leakiness (defined as the fraction of CO2 released in the bundle sheath by C-4 acid decarboxylations, which is lost by leakage) to be 0.2. We conclude that, although variation in Delta(d) observed in the 30 lines of S. bicolor is smaller than that commonly observed in C-4 species, it also reflects variation in transpiration efficiency, W. Among the eight lines examined in detail and in the environments used, there was considerable genotype x environment interaction.
Resumo:
Studies of alcoholism etiology often focus on genetic or psy-chosocial approaches, but not both. Greater understanding of the etiology of alcohol, tobacco and other addictions will come from integration of these research traditions. A research approach is outlined to test three models for the etiology of addictions — behavioral undercontrol, pharmacologic vulnerability, negative affect regulation — addressing key questions including (i) mediators of genetic effects, (ii) genotype-environment correlation effects, (iii) genotype x environment interaction effects, (iv) the developmental unfolding of genetic and environmental effects, (v) subtyping including identification of distinct trajectories of substance involvement, (vi) identification of individual genes that contribute to risk, and (vii) the consequences of excessive use. By using coordinated research designs, including prospective assessment of adolescent twins and their siblings and parents; of adult substance dependent and control twins and their MZ and DZ cotwins, the spouses of these pairs, and their adolescent offspring; and of regular families; by selecting for gene-mapping approaches sibships screened for extreme concordance or discordance on quantitative indices of substance use; and by using experimental (drug challenge) as well as survey approaches, a number of key questions concerning addiction etiology can be addressed. We discuss complementary strengths and weaknesses of different sampling strategies, as well as methods to implement such an integrated approach illustrated for the study of alcoholism etiology. A coordinated program of twin and family studies will allow a comprehensive dissection of the interplay of genetic and environmental risk-factors in the etiology of alcoholism and other addictions.
Resumo:
Historically, few articles have addressed the use of district level mill production data for analysing the effect of varietal change on sugarcane productivity trends. This appears to be due to lack of compiled district data sets and appropriate methods by which to analyse these data. Recently, varietal data on tonnes of sugarcane per hectare (TCH), sugar content (CCS), and their product, tonnes of sugar content per hectare (TSH) on a district basis, have been compiled. This study was conducted to develop a methodology for regular analysis of such data from mill districts to assess productivity trends over time, accounting for variety and variety x environment interaction effects for 3 mill districts (Mulgrave, Babinda, and Tully) from 1958 to 1995. Restricted maximum likelihood methodology was used to analyse the district level data and best linear unbiased predictors for random effects, and best linear unbiased estimates for fixed effects were computed in a mixed model analysis. In the combined analysis over districts, Q124 was the top ranking variety for TCH, and Q120 was top ranking for both CCS and TSH. Overall production for TCH increased over the 38-year period investigated. Some of this increase can be attributed to varietal improvement, although the predictors for TCH have shown little progress since the introduction of Q99 in 1976. Although smaller gains have been made in varietal improvement for CCS, overall production for CCS decreased over the 38 years due to non-varietal factors. Varietal improvement in TSH appears to have peaked in the mid-1980s. Overall production for TSH remained stable over time due to the varietal increase in TCH and the non-varietal decrease in CCS.
Resumo:
Variation in the growth, survival and change in total biomass (termed biomass increase) of different families of juvenile Penaeus japonicus was investigated over a range of temperatures in controlled laboratory experiments. In the first experiment, the effects of temperature on six families of juveniles were examined over a broad range of temperatures (24 to 30 degreesC). In the second experiment, the effects of temperature on six more families of juveniles were examined over a narrower range of temperatures (27.5 to 31.2 degreesC). Over the broad temperature range, mean growth and biomass increase were highest at 27 degreesC and mean survival was highest at 24 degreesC. Mean growth was lowest at 24 degreesC, whilst survival and biomass increase were lowest at 30 degreesC. However, there was a significant interaction between family and temperature, with some families tolerating a broader range of temperatures than others. As a result, the ranking of families in relation to growth, survival and biomass increase changed at each temperature. This effect was more pronounced for survival than for growth. Over the narrower range, temperature significantly affected growth, survival and biomass increase, but there was no significant interaction between family and temperature. Growth, survival and biomass increase were significantly lower at 31.2 than at 27.5 and 29.2 degreesC. These results suggest that if grow-out conditions for P. japonicus vary by more than a few degrees, interactions between family and temperature could affect the efficiency of selection. The results also suggest that the family x temperature interaction may have a more pronounced effect on survival than on growth. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Variations in the growth and survival of six families of juvenile (initial mean weight = 4.16 g) Penaeus japonicus were examined at two densities (48 and 144 individuals m(-2)) in a controlled laboratory experiment. Survival was very high throughout the experiment (95.4%), but differed significantly between densities and rearing tanks. Family, sex and family x density interaction did not significantly affect survival. Mean specific growth rate (SGR) of the shrimp was 18% faster at the low density (1.93 +/- 0.05% day(-1)) than at high density (1.64 +/- 0.03% day(-1)). However, there was a small but significant interaction between family and density indicating that growth of the families was not consistent at both densities. The inconsistent growth of the families across the two densities resulted in a change in the relative performance (ranking) of families at each density. Sex, rearing tank and rearing cage also affected growth of the shrimp. Mean SGR of the females (1.79 +/- 0.03% day(-1)) was 5% faster than males (1.70 +/- 0.03% day(-1)) when averaged across both densities. Shrimp grew significantly faster in rearing tank 3 than rearing tank 1 or 2 at both densities. Results of the present study suggest that family x density interaction could affect the efficiency of selection for growth if shrimp stocks produced from shrimp breeding programs are to be grown across a wide range of densities. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
When studying genotype X environment interaction in multi-environment trials, plant breeders and geneticists often consider one of the effects, environments or genotypes, to be fixed and the other to be random. However, there are two main formulations for variance component estimation for the mixed model situation, referred to as the unconstrained-parameters (UP) and constrained-parameters (CP) formulations. These formulations give different estimates of genetic correlation and heritability as well as different tests of significance for the random effects factor. The definition of main effects and interactions and the consequences of such definitions should be clearly understood, and the selected formulation should be consistent for both fixed and random effects. A discussion of the practical outcomes of using the two formulations in the analysis of balanced data from multi-environment trials is presented. It is recommended that the CP formulation be used because of the meaning of its parameters and the corresponding variance components. When managed (fixed) environments are considered, users will have more confidence in prediction for them but will not be overconfident in prediction in the target (random) environments. Genetic gain (predicted response to selection in the target environments from the managed environments) is independent of formulation.
Resumo:
Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today's settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene-environment interactions. For a best conduct of studies, modem toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Eight milling quality and protein properties of autumn-sown Chinese wheats were investigated using 59 cultivars and advanced lines grown in 14 locations in China from 1995 to 1998. Wide ranges of variability for all traits were observed across genotypes and locations. Genotype, location, year, and their interactions all significantly influenced most of the quality parameters. Kernel hardness, Zeleny sedimentation value, and mixograph development time were predominantly influenced by the effects of genotype. Genotype, location and genotype x location interaction were all important sources of variation for thousand kernel weight, test weight, protein content, and falling number, whereas genotype x location interaction had the largest effect on flour yield. Most of the genotypes were characterized by weak gluten strength with Zeleny sedimentation values less than 40 ml and mixograph development time shorter than 3 min. Eight groups of genotypes were recognized based on the average quality performance, grain hardness and gluten strength were the two parameters that determined the grouping, with contributions from protein content. Genotypes such as Zhongyou 16 and Annong 8903 displayed good milling quality, high grain hardness, protein content and strong gluten strength with high sedimentation value and long mixograph development time. Genotypes such as Lumai 15 and Yumai 18 were characterized by low grain hardness, protein content and weak gluten strength. Genotypes such as Yannong 15 and Chuanmai 24 were characterized by strong gluten strength with high sedimentation value and long mixograph development time, but low grain hardness and protein content lower than 12.3%. Genotypes such as Jingdong 6 and Xi'an 8 had weak gluten strength, but with high grain hardness and protein content higher than 12.2%. Five groups of locations were identified, and protein content and gluten strength were the two parameters that determined the grouping. Beijing, Shijiazhuang, Nanyang, Zhumadian and Nanjing produced wheats with medium to strong gluten strength and medium protein content, although there was still a large variation for most of the traits investigated between the locations. Wheat produced in Yantai was characterized by strong gluten strength, but with low protein content. Jinan, Anyang and Linfen locations produced wheats with medium to weak gluten strength and medium to high protein content. Wheats produced in Yangling, Zhenzhou, and Chengdu were characterized by weak gluten strength with medium to low protein content, whereas wheats produced in Xuzhou and Wuhan were characterized by weak gluten strength with low protein content. Industrial grain quality could be substantially improved through integrating knowledge of geographic genotype distribution with key location variables that affected end-use quality.
Resumo:
Parental divorce is associated with problematic offspring adjustment, but the relation may be due to shared genetic or environmental factors. One way to test for these confounds is to study offspring of twins discordant for divorce. The current analyses used this design to separate the mechanisms responsible for the association between parental divorce, experienced either before or after the age of 16, and offspring well-being. The results were consistent with a causal role of divorce in earlier initiation of sexual intercourse and emotional difficulties, in addition to a greater probability of educational problems, depressed mood, and suicidal ideation. In contrast, the increased risk for cohabitation and earlier initiation of drug use was explained by selection factors, including genetic confounds.
Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes
Resumo:
The effect of major dwarfing genes, Rht-B1 and Rht-D1, in bread (Triticum aestivum L.) and durum (Triticum turgidum L. var. durum) wheats varies with environment. Six reduced-height near-isogenic spring wheat lines, included in the International Adaptation Trial (IAT), were grown in 81 trials around the world. Of the 56 IAT trials yielding > 3 Mg ha(-1), the mean yield of semidwarfs was significantly greater than tails in 54% of trials; in the 27 trials yielding < 3 Mg ha-1, semidwarfs were superior in only 24%. Sixteen pairs of semidwarf-tall near-isolines were grown in six managed drought environment trials (DETs) in northwestern Mexico. In these trials, semidwarfs outyielded talls in all but the most droughted environment (2.5 Mg ha(-1)). The effect of the height alleles varied with genetic background and environment. For both yield and height, variance components for allele and environment by allele interaction were larger than those for genetic background and genetic background by environment. Pattern analysis showed that tall and semidwarf lines had similar adaptation to stressed environments (< 2.8 Mg ha(-1), low rainfall), while semidwarfs yielded more in less stressed environments (> 4.3 Mg ha(-1), high rainfall). The best adapted near-isogenic pair had a Kauz background, where the tall was only 16% taller than the dwarf. In the Kauz-derived pair, the semidwarf outyielded the tall in only 13% of trials with no differences in low yielding trials. This supports the idea that '' short talls '' may be useful in marginal environments (yield < 3 Mg ha(-1)).
Resumo:
Objective: To assess whether cannabis use in adolescence and young adulthood is a contributory cause of schizophreniform psychosis in that it may precipitate psychosis in vulnerable individuals. Method: We reviewed longitudinal studies of adolescents and young adults that examined the relations between self-reported cannabis use and the risk of diagnosis with a psychosis or of reporting psychotic symptoms. We also reviewed studies that controlled for potential confounders, such as other forms of drug use and personal characteristics that predict an increased risk of psychosis. We assessed evidence for the biological plausibility of a contributory causal relation. Results: Evidence from 6 longitudinal studies in 5 countries shows that regular cannabis use predicts an increased risk of a schizophrenia diagnosis or of reporting symptoms of psychosis. These relations persisted after controlling for confounding variables, such as personal characteristics and other drug use. The relation did not seem to be a result of cannabis use to self-medicate symptoms of psychosis. A contributory causal relation is biologically plausible because psychotic disorders involve disturbances in the dopamine neurotransmitter systems with which the cannabinoid system interacts, as demonstrated by animal studies and one human provocation study. Conclusion: It is most plausible that cannabis use precipitates schizophrenia in individuals who are vulnerable because of a personal or family history of schizophrenia.
Resumo:
Improvement of processing quality is a very important objective for Chinese wheat breeding programs. Twenty-five CIMMYT and Chinese spring wheat cultivars were grown at four managed conditions by CIMMYT in Cd. Obregon, Sonora, Mexico and in nine environments in China, over two successive wheat seasons from 2000 to 2002. These trials were used to identify patterns of cultivar, environment and cultivar x environment interactions, and to determine opportunities for indirect selection for protein content and the protein-quality related parameter, SDS sedimentation (SDSS) value. The cultivar Inqalab 91 showed low levels of interaction with environments in the 2000-01 crop cycle for protein content, and expressed intermediate levels for both protein content and SDSS value, across most of the environments in both years. Longmai 26 had consistently high protein content and SDSS value across environments in both years, indicating that it is possible to breed cultivars expressing high yields with good protein properties. Cluster analyses revealed that cultivars grouped differently for protein content and SDSS value. Besides photoperiod, water availability appeared to influence the ranking of cultivars for protein content and SDSS value. Temperature and soil type may underlie the observed interactions for protein content, while temperature may also be a factor associated with interactions for SDSS value. The full irrigation managed environment in Mexico, with the cultivars sown on raised beds two months later than optimum and exposing them to late heat, clustered together with the Chinese environments Huhhot, Yongning, and Hejin in the 2000-01 season for SDSS value. This indicates that there is an opportunity to exploit indirect responses to selection in the CIMMYT management environments for SDSS value with relevance for China's spring wheat regions. However, there seemed little chance for positive indirect selection in CIMMYT's managed environments for China in regard to protein content, as environments clustered distinctly. Pattern analyses permitted a sensible and useful summary for this multi environment experiment, helping in understanding natural relationships and variations in cultivar performance among the various environment groups, and assisting in the structuring of environments.