111 resultados para Business network
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
The conventional analysis for the estimation of the tortuosity factor for transport in porous media is modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds shows good agreement with a network model of randomly oriented intersecting pores for porosities upto about 50 percent, which is the region of practical interest. The predictions based on this network model are also found to be in better agreement with the data of Currie than earlier expressions developed for unconsolidated and grainy media.
Resumo:
In recent years, domestic business-to-business barter has become institutionalized as an alternative marketing exchange system in Australia, and elsewhere. This article reports the findings of a survey of 164 members of Australia's largest trade exchange, Bartercard There are few, if any, published empirical studies on this topic. This study is exploratory. Most firms surveyed are small firms in the services sectors. Although Bartercard has an extensive membership, trading within the system is limited with most members trading less than once per week and with barter transactions contributing less than 5% of their annual gross sales. The main benefits of membership include new customers and increased sales and networking opportunities. The main limitations include the limited functionality of the trade dollar limited trading opportunities, and practical trading difficulties. In selling, there appears to be no differential between the cash and trade prices, whereas trade dollars are discounted in purchasing. Participants acknowledge that business-to-business barter will remain and grow regardless of cyclical macroeconomic changes. (C) 1998 Elsevier Science Inc.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
An analytical approach to the stress development in the coherent dendritic network during solidification is proposed. Under the assumption that stresses are developed in the network as a result of the friction resisting shrinkage-induced interdendritic fluid flow, the model predicts the stresses in the solid. The calculations reflect the expected effects of postponed dendrite coherency, slower solidification conditions, and variations of eutectic volume fraction and shrinkage. Comparing the calculated stresses to the measured shear strength of equiaxed mushy zones shows that it is possible for the stresses to exceed the strength, thereby resulting in reorientation or collapse of the dendritic network.