29 resultados para Boneh-Boyen Signatures
Resumo:
This field study was a combined chemical and biological investigation of the relative effects of using dispersants to treat oil spills impacting mangrove habitats. The aim of the chemistry was to determine whether dispersant affected the short- or long-term composition of a medium range crude oil (Gippsland) stranded in a tropical mangrove environment in Queensland, Australia. Sediment cores from three replicate plots of each treatment (oil only and oil plus dispersant) were analyzed for total hydrocarbons and for individual molecular markers (alkanes, aromatics, triterpanes, and steranes). Sediments were collected at 2 days, then 1, 7, 13 and 22 months post-spill. Over this time, oil in the six treated plots decreased exponentially from 36.6 +/- 16.5 to 1.2 +/- 0.8 mg/g dry wt. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between oiled or dispersed oil plots. At 13 months, alkanes were >50% degraded, aromatics were similar to 30% degraded based upon ratios of labile to resistant markers. However, there was no change in the triterpane or sterane biomarker signatures of the retained oil. This is of general forensic interest for pollution events. The predominant removal processes were evaporation (less than or equal to 27%) and dissolution (greater than or equal to 56%), with a lag-phase of 1 month before the start of significant microbial degradation (less than or equal to 7%). The most resistant fraction of the oil that remained after 7 months (the higher molecular weight hydrocarbons) correlated with the initial total organic carbon content of the soil. Removal rate in the Queensland mangroves was significantly faster than that observed in the Caribbean and was related to tidal flushing. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.
Resumo:
We present a photometric investigation of the variation in galaxy colour with environment in 11 X-ray-luminous clusters at 0.07 less than or equal to z less than or equal to 0.16 taken from the Las Campanas/AAT Rich Cluster Survey. We study the properties of the galaxy populations in individual clusters, and take advantage of the homogeneity of the sample to combine the clusters together to investigate weaker trends in the composite sample. We find that modal colours of galaxies lying on the colour-magnitude relation in the clusters become bluer by d(B - R)/dr(p) = -0.022 +/- 0.004 from the cluster core out to a projected radius of r(p) = 6 Mpc, further out in radius than any previous study. We also examine the variation in modal galaxy colour with local galaxy density, 2, for galaxies lying close to the colour-magnitude relation, and find that the median colour shifts bluewards by d(B - R)/d log(10)(Sigma) = -0.076 +/- 0.009 with decreasing local density across three orders of magnitude. We show that the position of the red envelope of galaxies in the colour-magnitude relation does not vary as a function of projected radius or density within the clusters, suggesting that the change in the modal colour results from an increasing fraction of bluer galaxies within the colour-magnitude relation, rather than a change in the colours of the whole population. We show that this shift in the colour-magnitude relations with projected radius and local density is greater than that expected from the changing morphological mix based on the local morphology-density relation. We therefore conclude that we are seeing a real change in the properties of galaxies on the colour-magnitude relation in the outskirts of clusters. The simplest interpretation of this result (and similar constraints in local clusters) is that an increasing fraction of galaxies in the lower density regions at large radii within clusters exhibit signatures of star formation in the recent past, signatures which are not seen in the evolved galaxies in the highest density regions.
The polar ionosphere at Zhongshan Station on May 11, 1999, the day the solar wind almost disappeared
Resumo:
The solar wind almost disappeared on May 11,1999: the solar wind plasma density and' dynamic pressure were less than 1 cm(-3) and 0.1 nPa respectively, while the interplanetary magnetic field was northward. The polar ionospheric data observed by the multi-instruments at Zhongshan Station in Antarctica on such special event day was compared with those of the control day (May 14). It was shown that geomagnetic activity was very quiet on May 11 at Zhongshan. The magnetic pulsation, which usually occurred at about magnetic noon, did not appear. The ionosphere was steady and stratified, and the F-2 layer spread very little. The critical frequency of dayside F-2 layer, f(0)F(2), was larger than that of control day, and the peak of f(0)F(2) appeared 2 hours earlier. The ionospheric drift velocity was less than usual. There were intensive auroral E-s appearing at magnetic noon. All this indicates that the polar ionosphere was extremely quiet and geomagnetic field was much more dipolar on May 11. There were some signatures of auroral substorm before midnight, such as the negative deviation of the geomagnetic H component, accompanied with auroral E-s and weak Pc3 pulsation.
Resumo:
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae, The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented, A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria, Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group, Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species, A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology.
Resumo:
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate, During waterlogging soil amino acids increased, particularly gamma-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) N-15-enriched (0.3-4.3 parts per thousand) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in N-15 (-6.3 to -1.8 parts per thousand). Lignotubers and roots had delta(15)N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in N-15 (0.1-2 4 parts per thousand). The delta(15)N signatures of delta(15)N(total soil N) and delta(15)N(soil NH4+) were in the range 3.7-4.5 parts per thousand, whereas delta(15)N(soil NO3-) was significantly (P < 0.05) more enriched in N-15 (9.2-9.8 parts per thousand). It is proposed that there is discrimination against N-15 during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.
Resumo:
The basal dendritic arbors of over 500-layer III pyramidal neurones of the macaque cortex were compared by fractal analyses, which provides a measure of the space filling (or branching pattern) of dendritic arbors. Fractal values (D) of individual cells were compared between the cytochrome oxidase (CO)-rich blobs and CO-poor interblobs, of middle and upper layer III, and between sublaminae, in the primary visual area (Vi). These data were compared with those in the CO compartments in the second visual area (V2), and seven other extrastriate cortical areas. (V4, MT, LIP, 7a, TEO, TE and STP). There were significant differences in the fractal dimensions, and therefore the dendritic branching patterns, of cells in striate and extrastriate areas. Of the 55 possible pairwise comparisons of fractal dimension of neurones in different cortical areas (or CO compartments), 39 proved to be significantly different. The markedly different morphologies of pyramidal cells in the different cortical areas may be one of the features that determine the functional signatures of these cells by influencing the number of inputs received by, and propagation of potentials through, their dendritic arbors.
Resumo:
Stable carbon and nitrogen isotope signatures (delta C-13 and delta N-15) of Cannabis sativa were assessed for their usefulness to trace seized Cannabis leaves to the country of origin and to source crops by determining how isotope signatures relate to plant growth conditions. The isotopic composition of Cannabis examined here covered nearly the entire range of values reported for terrestrial C-3 plants. The delta C-13 values of Cannabis from Australia, Papua New Guinea and Thailand ranged from -36 to -25 parts per thousand, and delta N-15 values ranged from -1.0 to 15.8 parts per thousand. The stable isotope content did not allow differentiation between Cannabis originating from the three countries, but delta C-13 values of plantation-grown Cannabis differed between well-watered plants (average delta C-13 of -30.0 parts per thousand) and plants that had received little irrigation (average delta C-13 of -26.4 parts per thousand). Cannabis grown under controlled conditions had delta C-13 values of -32.6 and -30.6 parts per thousand with high and low water supply, respectively. These results indicate that water availability determines leaf C-13 in plants grown under similar conditions of light, temperature and air humidity. The delta C-13 values also distinguished between indoor- and outdoor-grown Cannabis; indoor- grown plants had overall more negative delta C-13 values (average -31.8 parts per thousand) than outdoor-grown plants (average -27.9 parts per thousand). Contributing to the strong C-13-depletion of indoor- grown plants may be high relative humidity, poor ventilation and recycling of C-13-depleted respired CO2. Mineral fertilizers had mostly lower delta N-15 values (-0.2 to 2.2 parts per thousand) than manure-based fertilizers (7.6 to 22.7 parts per thousand). It was possible to link delta N-15 values of fertilizers associated with a crop site to soil and plant delta N-15 values. The strong relationship between soil, fertilizer, and plant delta N-15 suggests that Cannabis delta N-15 is determined by the isotopic composition of the nitrogen source. The distinct delta N-15 values measured in Cannabis crops make delta N-15 an excellent tool for matching seized Cannabis with a source crop. A case study is presented that demonstrates how delta C-13 and delta N-15 values can be used as a forensic tool.
Resumo:
Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (delta N-15) and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO3-/NO2- and PO43-, compared to NH4+ in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant delta N-15 values ranged from 10.4-19.6 parts per thousand at the site of sewage discharge to 2.9-4.5 parts per thousand at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The delta N-15 isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters. (C) 2001 Academic Press.
Resumo:
delta(15)N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the delta(15)N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the delta(15)N signatures of peat layers. At two sites N-15-enriched peat delta(15)N signatures of up to +17parts per thousand were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat delta(15)N. Less N-15 enriched delta(15)N signatures (e.g. -1.9parts per thousand to +3.9parts per thousand) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that N-15 signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
Piston-cylinder experiments in the granite system demonstrate that a variety of isotopically distinct melts can arise from progressive melting of a single source. The relation between the isotopic composition of Sr and the stoichiometry of the observed melting reactions suggests that isotopic signatures of anatectic magmas can be used to infer melting reactions in natural systems. Our results also indicate that distinct episodes of dehydration and fluid-fluxed melting of a single, metapelitic source region may have contributed to the bimodal geochemistry of crustally derived leucogranites of the Himalayan orogen.
Resumo:
The utility of 16s rDNA restriction fragment length polymorphism (RFLP) analysis for the partial genomovar differentiation of Burkholderia cepacia complex bacterium is well documented. We compared the 16s rDNA RFLP signatures for a number of non-fermenting gram negative bacilli (NF GNB) LMG control strains and clinical isolates pertaining to the genera Burkholderia, Pseudomonas, Achromobacter (Alcaligenes), Ralstonia, Stenotrophomonas and Pandoraea. A collection of 24 control strain (LMG) and 25 clinical isolates were included in the study. Using conventional PCR, a 1.2 kbp 16s rDNA fragment was generated for each organism. Following restriction digestion and electrophoresis, each clinical isolate RFLP signature was compared to those of the control strain panel. Nineteen different RFLP signatures were detected from the 28 control strains included in the study. TwentyoneyTwenty- five of the clinical isolates could be classified by RFLP analysis into a single genus and species when compared to the patterns produced by the control strain panel. Four clinical B. pseudomallei isolates produced RFLP signatures which were indistinguishable from B. cepacia genomovars I, III and VIII. The identity of these four isolates were confirmed using B. pseudomallei specific PCR. 16s rDNA RFLP analysis can be a useful identification strategy when applied to NF GNB, particularly for those which exhibit colistin sulfate resistance. The use of this molecular based methodology has proved very useful in the setting of a CF referral laboratory particularly when utilised in conjunction with B. cepacia complex and genomovar specific PCR techniques. Species specific PCR or sequence analysis should be considered for selected isolates; especially where discrepancies between epidemiology, phenotypic and genotypic characteristics occur.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.