29 resultados para Biology, Molecular|Biology, Microbiology|Chemistry, Biochemistry
Resumo:
Using assay-directed fractionation of the venom from the vermivorous cone snail Conus planorbis, we isolated a new conotoxin, designated p114a, with potent activity at both nicotinic acetylcholine receptors and a voltage-gated potassium channel subtype. p114a contains 25 amino acid residues with an amidated C-terminus, an elongated N-terminal tail (six residues), and two disulfide bonds (1-3, 2-4 connectivity) in a novel framework distinct from other conotoxins. The peptide was chemically synthesized, and its three-dimensional structure was demonstrated to be well-defined, with an R-helix and two 3(10)-helices present. Analysis of a cDNA clone encoding the prepropeptide precursor of p114a revealed a novel signal sequence, indicating that p114a belongs to a new gene superfamily, the J-conotoxin superfamily. Five additional peptides in the J-superfamily were identified. Intracranial injection of p114a in mice elicited excitatory symptoms that included shaking, rapid circling, barrel rolling, and seizures. Using the oocyte heterologous expression system, p114a was shown to inhibit both a K+ channel subtype (Kv1.6, IC50) 1.59 mu M) and neuronal (IC50 = 8.7 mu M for alpha 3 beta 4) and neuromuscular (IC50 = 0.54 mu M for alpha 1 beta 1 is an element of delta) subtypes of the nicotinic acetylcholine receptor ( nAChR). Similarities in sequence and structure are apparent between the middle loop of p114a and the second loop of a number of alpha-conotoxins. This is the first conotoxin shown to affect the activity of both voltage-gated and ligand-gated ion channels.
Resumo:
Non-tree-based ('surrogate') methods have been used to identify instances of lateral genetic transfer in microbial genomes but agreement among predictions of different methods can be poor. It has been proposed that this disagreement arises because different surrogate methods are biased towards the detection of certain types of transfer events. This conjecture is supported by a rigorous phylogenetic analysis of 3776 proteins in Escherichia coli K12 MG1655 to map the ages of transfer events relative to one another.
Resumo:
The effects of ammonium sulphate concentration on the osmotic second virial coefficient (B-AA/M-A) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, B-AA/M-A assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to B-AA/M-A but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B-22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Resumo:
The cyclotides are a recently discovered family of miniproteins that contain a head-to-tail cyclized backbone and a knotted arrangement of disulfide bonds. They are approximately 30 amino acids in size and are present in high abundance in plants from the Violaceae, Rubiaceae, and Cucurbitaceae families, with individual plants containing a suite of up to 100 cyclotides. They have a diverse range of biological activities, including uterotonic, anti-HIV, antitumor, and antimicrobial activities, although their natural function is likely that of defending their host plants from pathogens and pests. This review focuses on the structural aspects of cyclotides, which may be thought of as a natural combinatorial peptide template in which a wide range of amino acids is displayed on a compact molecular core made up of the cyclic cystine knot structural motif. Cyclotides are exceptionally stable and are resistant to denaturation via thermal, chemical, or enzymatic treatments. The struclural features that contribute to their remarkable stability are described ill this review. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Isoleucine, leucine and valine are synthesized via a common pathway in which the first reaction is catalysed by AHAS (acetohydroxyacid synthase; EC 2.2.1.6). This heterotetrameric enzyme is composed of a larger subunit that contains the catalytic machinery and a smaller subunit that plays a regulatory role. The RSU (regulatory subunit) enhances the activity of the CSU (catalytic sub unit) and mediates end-product inhibition by one or more of the branched-chain amino acids, usually valine. Fungal AHAS differs front that in other organisms in that the inhibition by valine is reversed by MgATP. The fungal AHAS RSU also differs from that in other organisms in that it contains a sequence insert. We suggest that this insert may form the MgATP-binding site and we have tested this hypothesis by mutating ten highly conserved amino acid residues of the yeast AHAS RSU. The modified subunits were tested for their ability to activate the yeast AHAS CSU, to confer sensitivity to valine inhibition and to mediate reversal of the inhibition by MgATP. All but one of the mutations resulted in substantial changes in the properties of the RSU. Unexpectedly, four of them gave a protein that required mgATP in order for strong stimulation of the CSU and valine inhibition to be observed. A model to explain this result is proposed. Five of the mutations abolished MgATP activation and are suggested to constitute the binding site for this modulator.
Resumo:
Using in situ spectrometry data and visual system modeling, we investigate whether the colors conferred to the reef-building corals by GFP-like proteins would look colorful not only to humans, but also to fish occupying different ecological niches on the reef. Some GFP-like proteins, most notably fluorescent greens and nonfluorescent chromoproteins, indeed generate intense color signals. An unexpected finding was that fluorescent proteins might also make corals appear less colorful to fish, counterbalancing the effect of absorption by the photosynthetic pigments of the endosymbiotic algae, which might be a form of protection against herbivores. We conclude that GFP-determined coloration of corals may be an important factor in visual ecology of the reef fishes.
Resumo:
Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.