21 resultados para Biogeochemistry of trace metal
Resumo:
Despite its environmental (and financial) importance, there is no agreement in the literature as to which extractant most accurately estimates the phytoavailability of trace metals in soils. A large dataset was taken from the literature, and the effectiveness of various extractants to predict the phytoavailability of Cd, Zn, Ni, Cu, and Pb examined across a range of soil types and contamination levels. The data suggest that generally, the total soil trace metal content, and trace metal concentrations determined by complexing agents (such as the widely used DTPA and EDTA extractants) or acid extractants (such as 0.1 M HCl and the Mehlich 1 extractant) are only poorly correlated to plant phytoavailability. Whilst there is no consensus, it would appear that neutral salt extractants (such as 0.01 M CaCl2 and 0.1 M NaNO3) provide the most useful indication of metal phytoavailability across a range of metals of interest, although further research is required.
Resumo:
The effect of trace additions of magnesium on the sintering of aluminum and its alloys is examined. Magnesium, especially at low concentrations, has a disproportionate effect on sintering because it disrupts the passivating Al2O3 layer through the formation of a spinel phase. Magnesium penetrates the sintering compact by solid-state diffusion, and the oxide is reduced at the metal-oxide interface. This facilitates solid-state sintering, as well as wetting of the underlying metal by sintering liquids, when these are present. The optimum magnesium concentration is approximately 0.1 to 1.0 wt pet, but this is dependent on the volume of oxide and, hence, the particle size, as well as the sintering conditions. Small particle-size fractions require proportionally more magnesium than large-size fractions do.
Resumo:
Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).